
COMPUTING IN THE PHYSICAL WORLD

Roger D. Chamberlain and Ron K. Cytron

Draft Version 0.07

© 2022 Roger D. Chamberlain and Ron K. Cytron
All rights reserved

Contents

Preface ix

Acknowledgements xv

1 Introduction 1
1.1 Beginnings . 1

1.1.1 Why? . 1
1.1.2 The Arduino Platform 2

1.2 Digital Systems . 3
1.3 Authoring Programs . 7
1.4 Integrated Development Environments 8
1.5 Interacting with the Physical World 9
1.6 The Role of Design . 9

2 Digital Output 11
2.1 Why Digital Outputs? . 11
2.2 Software . 12
2.3 Example Digital Output Use Cases 13

2.3.1 LED Indicator . 13
2.3.2 Buzzer . 15
2.3.3 Relay . 16

3 Digital Input 21
3.1 Why Digital Inputs? . 21
3.2 Hardware . 22
3.3 Software . 23
3.4 Example Digital Input Use Cases 24

3.4.1 Switch . 24
3.4.2 Proximity Detector . 24
3.4.3 Beam Sensor . 24

iii

Contents

3.5 Debouncing Mechanical Contacts 25

3.6 Hardware vs. Software . 27

4 Analog Output 31

4.1 Why Analog Outputs? . 31

4.2 Relating Analog Output Values to Physical Reality 32

4.3 Software . 34

4.4 Example Analog Output Use Cases 35

4.4.1 Variable Speed Motor 35

4.4.2 Loudness . 37

5 Analog Input 39

5.1 Why Analog Inputs? . 39

5.2 Counts to Engineering Units . 40

5.2.1 Input Range and Linear Transformation 40

5.3 Software . 42

5.4 Example Analog Input Use Cases 43

5.4.1 Temperature . 43

5.4.2 Level . 44

5.4.3 Acceleration . 46

6 Timing 49

6.1 Execution Time . 50

6.2 Controlling Time . 51

6.3 Delta Time . 53

6.4 Multiple Time Periods . 55

7 Design Patterns 59

7.1 Finite-State Machines . 59

7.2 Polling and Interrupts . 67

7.2.1 Polling . 67

7.2.2 Interrupts . 72

7.2.3 Discussion . 73

7.3 Event-driven Programming . 75

7.3.1 Benefits of Event-driven Programming 75

7.3.2 Challenges with Event-driven Programming 77

8 Information Representation 81

8.1 Numbers . 81

8.1.1 Brief History of Number Systems 81

iv

Contents

8.1.2 Positional Number Systems 87

8.1.3 Supporting Negative Numbers 91

8.1.4 Integer Data Types in Programming Languages 95

8.1.5 Fractional Numbers . 96

8.1.6 Real Numbers . 97

8.2 Text: Characters and Strings 100

8.2.1 ASCII . 100

8.2.2 Unicode . 102

8.2.3 String Representations 103

8.3 Images . 104

8.3.1 Monochrome Images . 105

8.3.2 Color Images . 105

9 User Interaction 107

9.1 Visual Display . 107

9.1.1 Display Technologies . 107

9.1.2 7-segment Displays . 108

9.1.3 Pixel-oriented Displays 113

9.2 Hearing and Other Senses . 116

9.2.1 Sound . 116

9.2.2 Other Senses . 118

9.3 User Input . 118

9.4 User Interface Design . 118

10 Computer Architecture 119

10.1 Basic Computer Architecture 119

10.1.1 Architecture Components 119

10.1.2 Fetch-Decode-Execute Cycle 121

10.2 Instruction Set Architecture (ISA) 121

10.2.1 Register File . 122

10.2.2 Memory Model . 123

10.2.3 Instruction Set . 127

10.2.4 Operating Modes . 134

11 Assembly Language 135

11.1 Machine Instructions . 135

11.2 Assembly Language Instructions 136

11.3 Labels and Symbols, Constants and Numbers 137

11.4 Assembly Language Pseudo-operations 138

11.4.1 Sections . 138

v

Contents

11.4.2 Data Section Pseudo-ops 138

11.4.3 Text Section Pseudo-ops 139

11.4.4 Macros . 140

11.5 Authoring in Assembly Language 141

11.5.1 Accessing Data . 141

11.5.2 Control Flow Templates 146

11.6 Interfacing with C . 151

11.6.1 Calling Conventions . 151

11.6.2 Calling C Routines from Assembly Language 154

11.6.3 Calling Assembly Language Routines from C 155

12 Computer to Computer Communications 157

12.1 Stream Concepts . 158

12.2 Delivery of Streams . 159

12.2.1 Internet . 159

12.2.2 Serial Ports . 159

12.2.3 Other Streams . 160

12.3 Protocols . 160

12.3.1 Byte Delivery . 160

12.3.2 Delivering Larger Data Items 161

12.3.3 Messages . 162

12.4 Sending Messages: Composition 164

12.5 Receiving Messages: Parsing . 166

13 Conclusions 169

A Languages 171

A.1 Java vs. C . 171

A.1.1 Basic Syntax . 172

A.1.2 Primitive Data Types 173

A.1.3 Strings . 174

A.1.4 Arrays . 174

A.1.5 Heterogeneous Data Structures and Objects 175

A.1.6 Memory Management 175

A.1.7 Other Minutiae . 176

A.2 C vs. Arduino C . 176

A.2.1 Primitive Data Types 177

A.2.2 Objects . 177

A.2.3 Printing . 178

vi

Contents

B Simple Introduction to Electricity 179

C Base Conversions 181
C.1 Convert Base A to Base B using Base B Math 181
C.2 Convert Base A to Base B using Base A Math 182

Bibliography 187

Index 189

vii

Preface

Microcontrollers are fascinating devices. Complete computers on a chip, and
inexpensive enough to be affordable by hobbyists, they have been used for
almost every purpose imaginable. They maintain proper water chemistry
in swimming pools, they automatically feed the chickens on the farm, they
count the steps we take as part of helping us monitor our health, they control
the anti-lock brakes on our vehicles (along with the ignition timing and a
host of other things), they manufacture an innumerable variety of widgets on
production lines, they do all kinds of things.

The phrase embedded computer is often used to describe a computer that is
“embedded” (i.e., part of) a larger system (like a vehicle). For example, when
I buy a car, I don’t separately buy a computer to run the anti-lock brakes, that
computer “comes with” the car and is part of the car. From the consumers’
point of view, they haven’t purchased a computer, they’ve purchased a car
that happens to have an embedded computer that is part of it. In practice,
there are actually many computers in modern cars.

As a developer of applications that run on embedded computers, one must
be aware of how these machines are similar to and are different than tradi-
tional desktop, laptop, or server computers. Embedded computers often have
very limited memory (kilobytes or megabytes rather than gigabytes). While
modern desktop systems are almost universally 64-bit machines, embedded
processors are frequently 32-bits wide or even less (8-bit machines are actu-
ally quite common).

The examples throughout the book exploit the Arduino Uno platform. The
Arduino Uno is one of a family of small microcontroller systems based upon
the AVR series of chips from Microchip. The AVR is an 8-bit microcontroller
with a small on-chip memory, which helps keep it quite inexpensive. Rather
than spending $500 or more for a computer, an Arduino Uno costs closer to
$20. The Arduino platform (in all its variations) has quite a large following
in the hobbyist community.

There are many books about microcontrollers, how to interface microcon-

ix

Preface

trollers to physical devices (both input devices and output devices), and how
to write code that interacts with these devices. Many of these books target
the Arduino platform (both the Arduino Uno board and its associated inte-
grated development environment, or IDE). Most of these books, however, are
written for the hobbyist. The focus is on some particular set of experiments
or projects to build, rather than the general principles that underlay those
experiments or projects.

Here, we are primarily interested in the underlying fundamental principles
that guide how computers interact with the physical world. Rather than focus
on how to make a temperature measurement, for example, our focus is how
to go about sensing continuous-valued properties of the physical world, with
the temperature measurement being but one instance.

There are a number of principles that are distinct from traditional, desktop
computing.

• Sensing the physical environment – interacting with transduc-
ers. To interact with the physical world, there must be a literal connec-
tion that enables the interaction. A transducer that is impacted by the
physical world generates a signal that can be measured by the processor.
From the processor’s perspective, this can take one of two forms: digital
or analog. We will describe digital input mechanisms as well as analog-
to-digital conversion. What information transformation takes place as
part of an analog-to-digital conversion? What determines the ranges of
signals that can be effectively measured?

• Transforming the transducer signal into knowledge. It is rare
that signals coming directly from transducers are what is practically
desired. Voltage signals need to be converted into engineering units
that are relevant to the application. Temperature signals need to be
converted into degrees Celsius or degrees Fahrenheit. Accelerometer
signals need to be processed to detect steps as an input to a pedometer.
We will describe the formal mechanisms for many of these conversions
and will introduce novice-friendly versions of transformations that are
substantially more sophisticated.

• Impacting the physical environment – interacting with actua-
tors. In addition to sensing the physical world, we frequently want to
have an impact on it. Whether turning heating elements on and off to
control the temperature in a space, or engaging drive wheels to make
a robot move, there is quite a bit to address when dealing with out-
put devices. As with input devices, outputs can be classified into the

x

two forms of digital outputs (on/off) or analog outputs (continuous sig-
nals). In addition, digital-to-analog conversion takes a number of forms.
We will describe not only the mechanisms associated with driving out-
put devices, but also discuss approaches to digital feedback control, in
which the computer system is tasked with controlling some aspect of the
physical world.

• Dealing effectively with time. The correctness of many computer
programs is not impacted by how long the computation takes to complete
(as long as it completes in finite time). The opposite is true for many
circumstances in which a computer is interacting with the physical world.
When something happens is often just as crucial to correct operation as
what happens. We will describe approaches to software development
that include time as a functional property.

In addition, there are a number of principles that are common to embedded
computing and desktop computing.

• Importance of good design. Design patterns that have a long history
of repeated use are a critical thing for new programmers to start learning.
We will describe the finite-state machine computational abstraction and
provide several examples of its use. In addition, we will describe and
contrast polling versus interrupt-driven approaches to digital input.

• Information representation. Everything input, processed, stored, or
output from a digital computer is represented in some digital form. This
includes numbers, letters, images, videos, graphs, maps, and everything
else. And to make the world even more complicated, not all computers
represent information in exactly the same way. We will describe the
commonly used forms of information representation in microcontrollers,
starting with a brief history of numbers, then describing integers and
floating-point numbers and progressing to text and a very brief intro-
duction to images.

• User interfaces. While embedded systems are frequently interacting
with the physical world, it is also imperative that they interact with
human users. We will describe approaches to the human-computer in-
terface that are common in embedded systems, which mostly use the
same technology as the approaches used in desktop machines.

• Computer architecture. While one can program a computer with
the mental model that the machine directly executes instructions in the

xi

Preface

programming language of choice, that is at best a poor illusion of what
is really happening. We will describe the basics of how a computer is
constructed, how it executes instructions, and what actual instructions
really exist.

• Assembly language. When exploring how computers actually work,
it is common practice to program them directly with the instructions
that they actually execute. Assembly language is a human-accessible
version of those instructions. We will describe both machine language
(the actual instructions), assembly language, and their relationship to
one another. This is followed by a discussion of assembly language pro-
grams can effectively interact with programs written in a higher-level
language such as C.

• Computer to computer communications. Computers frequently
communicate with one another, using a variety of physical mechanisms,
including wired networks, wireless networks, and point-to-point cables
of many forms. Common to all of these mechanisms, however, is the con-
cept of a stream of bytes being delivered from one machine to the other.
We will describe both the concept of streams and several mechanisms
for their delivery. This is followed by a discussion of communication
protocols and the sending and receiving of messages of various forms.

We will address each of these principles as part of this book.
Very little prerequisite knowledge is needed to be able to understand and

learn the material covered in the book. We assume a familiarity with a pro-
cedural language (e.g., Java is commonly taught as a first language and is
syntactically very close to the subset of C used on the Arduino platform).
We don’t assume knowledge of object-oriented programming (i.e., no poly-
morphism, no inheritance, etc.). We assume a very basic understanding of
electricity (voltage, current, how to read a schematic diagram), but you don’t
need to know Ohm’s Law, Kirchoff’s Laws, or how to design an amplifier.
The mathematical tools required are limited to algebra and base conversions
(between decimal, binary, and hexadecimal).

There are a set of appendices that will help the reader that is unfamil-
iar with some of the required prerequisite knowledge to come up to speed.
Appendix A gives a quick overview comparing the Java and C programming
languages, including a comparison between standard C and the variant we call
Arduino C. Appendix B provides a simple introduction to electricity at the
level needed to understand the examples in the book. Appendix C provides a
refresher course on base conversions.

xii

This book was written to serve as the textbook for a first-year, second-
semester course in the Dept. of Computer Science and Engineering at Wash-
ington University in St. Louis [3]. It is a required course for both computer
science and computer engineering majors, and it serves as a technical elective
for computer science minors and electrical engineering majors. In contrast
to traditional embedded computing books and courses, which are typically
offered at the junior or senior level, this book and the associated course are
aimed squarely at students who are early in their study of computing.

The course at Washington University in St. Louis covers the majority of
the book. There are, however, elements that are separable so as to enable a
course that does not move at the same pace. Chapters 1 through 8 are consid-
ered core material and have a place in any course, although some individual
topics (e.g., polling versus interrupt-driven input) can easily be skipped. Op-
tional material includes Chapter 9 – User Interaction, Chapters 10 and 11 –
Computer Architecture and Assembly Language, and Chapter 12 – Computer
to Computer Communications.

xiii

Acknowledgements

NOTE: The acknowledgements section has not yet been written.

xv

1 Introduction

1.1 Beginnings

Years ago, computers were big bulky things that consumed entire rooms, some-
times entire buildings, to house them. Users accessed them by first scheduling
time with the owner of the computer (only one program at a time could run)
and then coming to the computer room to manually input their program and
input data, perform a run, and examine the outputs. The program might
have been stored on a paper tape, with holes punched in it to represent the
details of the machine instructions. The output invariably was on a stream of
fan-fold paper.

We have we come a long way since then. Computers are now ubiquitous
in our lives. We carry them around in our pockets, use them to interact
with friends (both close friends we see every day and far-off friends we almost
never see other than via social media), and trust them to monitor our health
(keeping track of our heart rate and how many steps we make each day).

This text will focus primarily on the latter of these three examples of
ubiquity. In the modern world, computers are no longer relegated to running
programs that have input provided by a paper tape and outputs printed on
fan-fold paper. Nor are they relegated to the more recent circumstance of
input provided by a keyboard and outputs presented on a desktop screen. No,
modern computers frequently take their inputs directly from measurements
made from the physical world, and often control aspects of that same physical
world.

1.1.1 Why?

We are interested in computers that interact with the real physical world be-
cause those computers can do so much more than a computer that is relegated
to only have input from humans and output to humans. When a computer
that is held in the palm of our hand includes a microphone, a speaker, and a

1

1. Introduction

cellular radio, it becomes a phone. When a computer controls the timing of
spark plug firings in an internal combustion engine, the engine can run more
efficiently, increasing engine power and decreasing fuel consumption.

The examples above are possible when the computer senses one or more
properties of the physical world around it and is able to effect change in the
physical world as well. In this book, we describe how computers can interact
with the real world, and what are the fundamental principles involved in
building and programming computer systems that have these capabilities.

1.1.2 The Arduino Platform

The microcontroller that we will use to illustrate the topics we cover is the AVR
microcontroller manufactured by Microchip, specifically the ATmega328P. It
is an 8-bit processor, and it has 14 digital input/output pins (of which 6
can be used as pulse-width modulated analog outputs), 6 analog input pins
(supporting a 10-bit A/D converter), 32 KBytes of program memory, and
2 KBytes of data memory. The term microcontroller is frequently used for a
chip that contains not only the processor, but additional components as well,
such as I/O and built-in memory.

The ATmega328P microcontroller is used on the Arduino Uno, one of a
line of experimental boards used extensively by hobbyists. Other boards in
the Arduino family use other microcontrollers in the AVR line (all of which
share the same instruction set, varying in the number of I/O pins, memory,
etc.).

All of the Arduino boards can be programmed using a variant of the C
language. Software development is supported via an integrated development
environment (IDE) that is open source and free to use. Arduino programs are
called sketches in the hobbyist community, and we will follow that convention.
Figure 1.1 shows a very simple sketch that prints a message to the desktop
PC.

Every Arduino sketch has at least two components, setup() and loop().
The code that is in setup() is executed once, at the beginning of the run, and
the code that is in loop() is executed repeatedly thereafter. A sketch does
not terminate, but runs until stopped by the user (e.g., by issuing a reset).

Appendix A describes some of the idiosyncrasies of the Arduino C variant
that is supported. It is also possible to author programs using the AVR
assembly language, a topic that will be discussed in Chapter 10. All of the
program code that we use in examples has been tested on the Arduino Uno
platform. However, the changes needed for other Arduino boards are quite
small (e.g., altering the specific pins used for particular I/O functions).

2

http://www.arduino.cc/en/Reference/setup
http://www.arduino.cc/en/Reference/loop
http://www.arduino.cc/en/Reference/setup
http://www.arduino.cc/en/Reference/loop

1.2. Digital Systems

void setup() {

Serial.begin(9600); // setup communications

Serial.println("Hello world!"); // print message

}

void loop() {

}

Figure 1.1: Hello world example sketch.

1.2 Digital Systems

In all digital systems, information is represented in binary form. The binary
number system is one in which there are only two possible values for each
digit: 0 and 1. At different times and for different purposes the 1s and 0s
mean different things. One useful meaning is for 1 to represent TRUE and 0
to represent FALSE, allowing us to reason using propositional calculus.

Let’s say we are studying at a university that requires all of its students to
have taken one or more courses in economics prior to graduation. We will fur-
ther assume that the economics requirement is to study both microeconomics
(how individuals and organizations make economic decisions that effect them-
selves) and macroeconomics (how economies as a whole operate at a large
scale, e.g., at the level of a country). Given the availability of the following
three courses:

Econ A Introduction to Microeconomics
Econ B Introduction to Macroeconomics
Econ C Economics Survey: Micro and Macro

we use the symbol A to represent a student having completed Econ A, the
symbol B to represent the student having completed Econ B, and C to rep-
resent the completion of Econ C. Each of these symbols (A, B, or C) can
take on the value 0 or 1, and cannot take on any other value. Under these
constraints, these symbols are said to be Boolean valued (the name coming
from George Boole, 19th century mathematician, who is often considered to
be the father of modern digital logic [1]).

If the symbol E represents our student having completed the economics
requirement, we can write down an equation that embodies this definition:

E = (A AND B) OR C (1.1)

3

1. Introduction

where the AND operator and the OR operator are described with precision
below, but have meaning that is consistent with the normal English definitions
of the terms. In English, we would say that the student needs to take both
Econ A and Econ B (one providing microeconomics knowledge and the other
providing macroeconomics knowledge) or the student needs to take Econ C
(which provides both micro- and macroeconomics training). Clearly, the equa-
tion can be interpreted by someone reading it to mean exactly the same thing.

The AND operator and the OR operator are two of three basic logical
operations supported in Boolean algebra, the third being the NOT operator.
Boolean algebra is a mathematical framework that allows us to formally reason
about Boolean valued variables, operations on those variables, and equations
that utilize those operations. Equation (1.1) is an example of an equation in
Boolean algebra.

We will define these three operations (AND, OR, NOT) through complete
enumeration of all the possible combinations of values. This is a technique that
is available to us primarily because the number of combinations isn’t all that
large. Since each variable can only have two values, things stay at reasonable
sizes as long as the number of variables also stays small. It is common to call
the tables that show all possible values truth tables. (It should be clear why
this name is used, given the frequent interpretation, which we are using here,
of 0 representing FALSE and 1 representing TRUE.) Table 1.1 shows the truth
tables for the AND operation, the OR operation, and the NOT operation.

Table 1.1: Truth tables for (a) AND, (b) OR, and (c) NOT operations.

x y z

0 0 0
0 1 0
1 0 0
1 1 1

x y z

0 0 0
0 1 1
1 0 1
1 1 1

x z

0 1
1 0

(a) (b) (c)

As mentioned above, the formal definitions of the operations, as shown
in Table 1.1, closely follow the normal English language usage of the words
used to name the operations. The AND operation yields a 1 only when both
inputs are 1, the OR operation yields a 1 when either input is a 1, and the
NOT operation yields a 1 when its single input isn’t a 1. It is important to
note, however, that these formal definitions are how one resolves potential
ambiguity. In English, the word “or” can, in some circumstances, mean “x or
y but not both x and y together,” but this is not the meaning defined in the

4

1.2. Digital Systems

truth table.

Using the symbols frequently utilized by logicians, Equation (1.1) can be
rewritten as follows:

E = (A ∧B) ∨ C (1.2)

where the ∧ symbol is used to represent the AND operation and the ∨ symbol
is used to represent the OR operation.

Just to illustrate that there are many ways to write down the same no-
tion, the more common notation used in computer engineering and electrical
engineering disciplines is to use the traditional addition symbol (+) for OR
and the traditional multiplication notation (either · or simply juxtaposition)
for AND. Using this approach, the equation now looks like this,

E = (A ·B) + C (1.3)

or this,

E = AB + C (1.4)

where Equation (1.4) has also taken advantage of the normal convention that
multiplication takes precedence over addition (in this case, AND takes prece-
dence over OR) to drop the parenthesis from the equation.

Since there are only 3 variables on the right-hand side of the equation, and
each variable can have only two values, we can examine this equation with the
help of a truth table. Recall that in a truth table, all possible combinations
of the input variables are listed, one combination per row. In the truth table
for an expression, different columns are frequently used to represent different
subexpressions (or the final value). The truth table for Equation (1.4) is shown
in Table 1.2.

Table 1.2: Truth table showing all possible conditions for each input variable
in Equation (1.4).

A B C AB AB + C E

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 1 1
1 1 0 1 1 1
1 1 1 1 1 1

5

1. Introduction

It is also possible to build a physical system that implements the logical
reasoning encoded into Equation (1.4), and Equations (1.1) to (1.3) as well.
Figure 1.2 shows the schematic diagram symbols for each of the 3 operations.
The physical implementations of these symbols are called gates, and the logical
values are encoded as voltages on input and output wires (typically, a HIGH
voltage represents a 1 and a LOW voltage represents a 0).

(a) (b) (c)

Figure 1.2: (a) AND gate. (b) OR gate. (c) NOT gate.

Using these logic gates as building blocks, Figure 1.3 shows a schematic
diagram for a circuit that implements Equation (1.4). The inputs A, B, and
C on the left encode whether or not the student has taken the courses Econ A,
Econ B, and Econ C, respectively. The output E on the right encodes whether
or not the student has met the economics requirement for the degree.

Figure 1.3: Gate-level schematic diagram of circuit that implements economics
course requirement check.

Figure 1.3 is a simple example of an application-specific computation. It
does a great job of its assigned application (checking whether or not a student
has met his/her economics requirement); however, it doesn’t really do much
of anything else. Most of the time, we are interested in more general purpose
computing devices. These are ones that can compute not only the results of
Equation (1.4), but many other computations as well.

Computers are simply digital systems that have been engineered to do
multiple tasks instead of an individual task. We provide them with a program,
which gives specific instructions for the computer to execute. Computers come
in many sizes, from small enough to fit in a smart watch, to large enough to
fill a room; however, they all do exactly what they are told. They execute
specific instructions given to them in the form of a program.

6

1.3. Authoring Programs

1.3 Authoring Programs

In order to provide a computer with a program, we must first design that
program, and author it in some language that the computer can understand.
Many are familiar with high-level languages, such as C, C++, Java, etc., that
are frequently used to author programs. We will write in a variant of the C
language as we develop programs for the AVR microcontroller.

These languages, however, are not the language of the processor itself. In-
stead, the processor directly executes machine language, a much lower-level
language that directly encodes the specific instructions to be executed, one af-
ter the other, by the computer. Machine language instructions are represented
as a string of 1s and 0s stored in the memory of the processor.

It is possible to author programs at the same conceptual level as machine
language. To do this, we use assembly language, which is a human-readable
and -writable language that has a one-to-one relationship with machine lan-
guage. Instead of representing instructions directly as 1s and 0s, however,
assembly language uses mnemonic names for instructions.

Figure 1.4 shows the relationship between machine language, assembly
language, and high-level languages. Each assembly language instruction cor-
responds to an individual machine language instruction (in a one-to-one re-
lationship). Each high-level language statement corresponds to multiple ma-
chine language instructions (in a one-to-many relationship).

Figure 1.4: Relationship between languages. Assembly language (asm), ma-
chine language (ml), and high-level language (HLL).

Various software tools are used to translate between languages. Tradition-
ally, a software tool that translates assembly language programs into machine
language is called an assembler . The tool that translates a high-level lan-
guage program into either assembly language or machine language is called a

7

1. Introduction

compiler . Both are built into an integrated development environment (IDE).

1.4 Integrated Development Environments

A practitioner in any discipline would tell you that having the right tool for a
given task improves the efficiency and enjoyment of completing the task, and
that the quality of the completed task is improved as well. The development
of software, hardware, or co-designed systems is often a complex undertaking,
involving multiple developers, shifting goals and deliverables, and limited re-
sources. Integrated development environments have emerged as the platform
of choice for developers because they facilitate the creation of quality systems.

The process of authoring a program, as described above, involves different
components of what is typically called the development stack. Each layer of
the stack plays some role in the creation of the end product. An Integrated
Development Environment (IDE) allows the layers of that stack to interoperate
beneficially and to provide useful feedback to the product’s developers. Here
are some examples of the features provided by an IDE:

• The source code of the project can be viewed and edited efficiently. The
syntax is typically formatted consistently and highlighted to improve
readability. Color and font may distinguish programming language ele-
ments (if, then, else) from program-specific concepts (local variables,
data types, packages).

As an example, consider changing a particular method named foo to
bar throughout an entire application. A text editor alone could find
occurrences of foo, but some of those might be variable names and
some may occur in comments. It requires the integration of a compiler
with the editor to accomplish a method rename.

• A debugger may help diagnose the cause of a program’s undesirable
behavior. The IDE can facilitate tracing the program’s behavior and
relating it to variables, methods, and statements as seen in the editor.

• When a system is tested, one criterion for completeness concerns the
coverage of a program’s statements. Testing in an IDE can show lines
of a project that have not been exercised by existing tests.

IDEs typically simplify importing code from a shared repository and exporting
the results of modifications back to the repository. IDEs such as eclipse offer
services and interfaces that allow the open-source community to introduce

8

1.5. Interacting with the Physical World

new tools into the IDE that integrate well with tools and components already
present.

1.5 Interacting with the Physical World

We are interested in computers that interact with the real world. They take
measurements of physical phenomena, perform some computation, and op-
tionally trigger some physical action. Examples of computers that perform
these types of functions include the temperature and humidity controller in
an environmental chamber, the embedded computers that control the flight
surfaces (e.g., rudder, elevators, ailerons) in a fighter jet, and the FitbitTM

that you might be wearing on your wrist right now. A self-driving car has
embedded computers of this type, of course, or it wouldn’t be able to know
what was in its immediate environment and react accordingly. Regular cars,
however, also have embedded computers doing sensing and control. Examples
in include the computer-controlled anti-lock brakes and protective airbags,
both safety-oriented subsystems in virtually all modern vehicles.

To accomplish these tasks, the computer cannot be limited to a keyboard
for input and a screen for output. Instead, it must interact directly with the
physical world. In the next 4 chapters, we will examine 4 specific mechanisms
that allow interaction between the computer and the real world.

Another element of interaction that is common in most computers is their
ability to communicate with other computers. The Internet of Things (IoT)
has developed out of an ability for large numbers of computers to make mea-
surements about the physical world and then communicate those measure-
ments to other computers (e.g., a server in the cloud) so that knowledge can
be gained about the entire collection.

1.6 The Role of Design

We are surrounded by objects, mechanisms, and interfaces that are the result
of design, but ironically design is most successful when it is least apparent.
When you approach a door with the intention of opening it, how do you know
whether to push or pull on the door’s handle? A well designed door makes
such interactions obvious, to the extent that its users express no wonder at
its ease of operation.

Practitioners of computer science and engineering are often faced with
design choices and decisions that affect the efficiency, security, and usability
of their products. The most effective designs take into account the context in

9

1. Introduction

which a product will be deployed as well as considerations of how the product’s
usage might evolve over time. Even our simple door is not so simple: if the
door has a latching mechanism, should it be operated via a simple knob?
A round, smooth knob is less likely to tangle with clothing, but requires
some dexterity and hand strength to operate. A lever can be operated more
universally, but it could also interact unpredictably with belt loops or pants
pockets.

The point here is that with most design, there is no absolutely right or
wrong answer. There are tradeoffs that must be considered, and the value of
a given design is measured in terms of its suitability for a particular environ-
ment or context. Throughout this text, you will be exposed to design choices,
evaluations, and patterns. While you could study this material without any
consideration of design, engineers continually grapple with design. By intro-
ducing design this early in your studies, you can begin to see the challenges
and rewards of considering design alternatives as you develop solutions.

10

2 Digital Output

A digital output is pretty much exactly like you would expect, given the
normal English definitions of “digital” and “output.” There are only two
possible values, which we will denote as 0 and 1, and the computer is sending
one of those two values out into the physical world.

Electrically, one of the pins of the microcontroller is establishing a LOW
voltage (for an output value of 0) or a HIGH voltage (for an output value of
1). To be safe (and for a number of other reasons), actually neither output
value is a high enough voltage that we need to be concerned about touching
it. The HIGH voltage mentioned above is approximately 5 V above the GND
potential (for a 5 V microcontroller, it would be about 3.3 V on a 3.3 V
microcontroller), and the LOW voltage is approximately 0 V above the GND
potential (i.e., it is at the same voltage as GND). If you are unfamiliar with
the concept of voltage, see Appendix B.

So, if we have a pin on the microcontroller that can establish a HIGH
voltage or a LOW voltage out, what good is that? Let’s examine what a
digital output is actually good for.

2.1 Why Digital Outputs?

This book is about computing in the physical world, and a digital output is
the simplest way that a computer can influence the world around it. If the
computer is controlling the light in a room, a digital output is used to turn the
light on or off. If the computer is communicating the presence (or absence)
of an alarm, a digital output is used to turn the alarm on or off. This is true
if the alarm is a buzzer or if the alarm is some large visual indicator. If the
computer is controlling the heating element in an oven, a digital output can
be used to turn the heating element on or off. If the computer is controlling
a conveyor belt, a digital output is used to turn the conveyor belt on or off.

The pattern should be pretty obvious. Whenever there are two output

11

2. Digital Output

options, the physical effect can be controlled via a digital output. All that is
required is circuitry that transforms the output voltage from the microcon-
troller (either LOW or HIGH) into the actuator control desired in the real
world.

2.2 Software

To control a digital output pin from software, we must first configure the pin
as a digital output. Most of the pins on the microcontroller serve multiple
purposes (e.g., digital output and digital input), and it is our responsibility
to configure the pin prior to use.

Configuring a digital output pin is accomplished using the pinMode() func-
tion. It takes two arguments, the first is an int identifying the pin number
and the second is the the constant OUTPUT indicating that the pin is now a
digital output.

Once the pin has been configured, the digitalWrite() function is used
to set the output HIGH or LOW. A HIGH output corresponds to 5 V (for a 5 V
microcontroller) and a LOW output corresponds to 0 V.

Figure 2.1 gives an example sketch that toggles a digital output at 1 Hz
(high for 0.5 s, low for 0.5 s, high for 0.5 s, etc.). Figure 2.2 shown an image
from a logic analyzer what happens on that output pin

const int doPin = 12; // digital output pin is 17

void setup() {

pinMode(doPin, OUTPUT); // set pin to digital output

}

void loop() {

digitalWrite(doPin, HIGH); // set the output HIGH

delay(500); // wait for 0.5 s (500 ms)

digitalWrite(doPin, LOW); // set the output LOW

delay(500); // wait for 0.5 s

}

Figure 2.1: Example digital output sketch.

12

http://www.arduino.cc/en/Reference/pinMode
http://www.arduino.cc/en/Reference/digitalWrite

2.3. Example Digital Output Use Cases

Figure 2.2: Logic analyzer trace illustrating output square wave.

Practice Problem What is the period of the output waveform generated
by the sketch of Figure 2.1?

Solution The period is 1000 ms (or 1 s), the sum of the two delay() invo-
cations.

2.3 Example Digital Output Use Cases

2.3.1 LED Indicator

One of the simplest digital output devices one can imagine is a light that is
either on or off. LEDs (light emitting diodes) are a common light source that
are easy to control from a microcontroller’s digital output pin. Figure 2.3
shows the schematic for controlling a single LED from pin 17 of the micro-
controller (there is nothing special about pin 17, other than it must be usable
as a digital output pin and it is the pin number from the example code in
Figure 2.1).

If the sketch from Figure 2.1 is executed on the microcontroller that has
the schematic from Figure 2.3 constructed, the LED will light up in response
to the digitalWrite(doPin,HIGH) call. This is because a positive voltage is
presented to the anode of the LED and zero volts are presented to the cathode
(which is at GND potential). Generally, the HIGH voltage out of the micro-
controller (+5 V) is too large for the LED, and it is possible to damage the

13

2. Digital Output

μC
D0

Figure 2.3: Schematic diagram of digital-output-controlled LED with active
high control polarity. The anode is the topmost terminal of the LED and the
cathode is the bottom terminal.

LED or the microcontroller, so we use the current limiting resistor to ensure
that does not happen. One half-second later, the digitalWrite(doPin,LOW)

call will cause the LED to become dark. With zero volts on the anode and
zero volts on the cathode, the LED will not light.

In this example, when the digital output is HIGH, the LED is on, and when
the digital output is LOW, the LED is off. This design choice is commonly
called active high, meaning that the action (here, lighting the LED) happens
when the signal is high. That is a completely arbitrary choice, however. Con-
sider the schematic diagram shown in Figure 2.4, which gives an alternative
design. In this case, the digital output is connected to the cathode side of the
LED, and the anode side goes to +5 V. With this design, an output HIGH,
gives 5 V on both the anode and the cathode of the LED, and it will stay dark.
An output LOW, on the other hand, provides 0 V to the cathode side of the
LED, which will cause it to light up. This design choice is commonly called
active low . As a result of the alternative schematic connections, the operation
of the light as a function of the digital output polarity has been reversed.

What this shows is that while there is a direct one-to-one relationship be-
tween the digital output value (HIGH or LOW) and the LED being controlled
(on or off), the mapping between these two is determined by the design of the
electrical circuit(s) that connect them.

14

2.3. Example Digital Output Use Cases

Figure 2.4: Schematic diagram of digital-output-controlled LED with active
low control polarity. In this case, the anode of the LED is tied to +5 V and
the cathode is tied to the digital output pin.

2.3.2 Buzzer

A commonly used technique to generate an audio signal is through the use of
a buzzer. When a voltage is applied across the buzzer, it makes a sound, and
is silent otherwise. This is a perfect example of a digital output.

The schematic diagram of a buzzer output is shown in Figure 2.5. When
the digital output is HIGH, the buzzer makes sound, and when the digital
output is LOW, the buzzer is silent.

μC
D0

Figure 2.5: Schematic diagram of digital-output-controlled buzzer.

15

2. Digital Output

2.3.3 Relay

A relay is another device that can be controlled with a digital output. A relay
has a low-voltage control side that turns on or turns off a set of mechanical
contacts that can be used to control high-voltage devices, such as devices that
use 110 V AC power from the wall socket. This might include motors, pumps,
heating elements, etc.

The schematic diagram of a relay output is shown in Figure 2.6. When
the output is HIGH, the relay coil is energized, which causes the switch to
make contact. This forms a closed circuit between the two terminals on the
right. When the output is LOW, the switch is open, so the two terminals form
an open circuit (i.e., they do not conduct). Note, the diode shown across the
relay coil is a protection diode, which often is manufactured as part of the
relay assembly. Other times it must be included by the circuit designer.

μC
D0

Figure 2.6: Schematic diagram of digital-output-controlled relay.

The purpose of a relay, in many cases, is to allow a low-voltage device
(like a microcontroller) to control a high-voltage device (e.g., 110V powered
equipment). This has its limitations, however, as a relay is a mechanical
device, and will wear out with repeated usage much more quickly than an
all-electronic approach.

Note that the relay we used has ”normally open” (NO) contacts, meaning
that when the coil is not energized, the contacts are open, and they close
only when the coil is energized. There are also relays manufactured with
“normally closed” (NC) contacts, meaning that when the coil is not energized,
the contacts are closed, and they open only when the coil is energized.

16

2.3. Example Digital Output Use Cases

Practice Problem Redraw the schematic of Figure 2.6 so that it is con-
trolled with an active low signal (i.e., instead of a HIGH output turning the
relay on, a LOW output turns the relay on).

Solution Here is one possible solution to the problem:

μC

D0

+5V

Pump

Figure 2.7 shows the schematic diagram of a relay controlling a pump that
is powered by 110 V AC. When the digital output is HIGH, and the relay is
energized, the pump is powered.

Heater

Figure 2.8 shows the schematic diagram of a relay controlling a 110 V AC
powered heating element. It works very much the same as the pump example
above.

Motor

The schematic diagram for controlling a very small motor is shown in Fig-
ure 2.9. As with the relay, there is a diode connected across the terminals of
the motor for protection of the electronics. Similar to a relay coil, the mo-
tor is an inductive load, which means a fast turn-off can be damaging to the
controlling electronics if not protected.

As with all of the other digital-output-controlled devices, the motor is on,
running at its maximum speed, when the digital output is HIGH and is off,

17

2. Digital Output

μC
D0

Figure 2.7: Schematic diagram of digital-output-controlled relay driving a
pump.

μC
D0

Figure 2.8: Schematic diagram of digital-output-controlled relay driving a
heater.

stopped, when the digital output is LOW. In Chapter 4 we describe how to
exert more fine-grained control over the speed of the motor.

18

2.3. Example Digital Output Use Cases

μC
D0

M

Figure 2.9: Schematic diagram of directly connected 5 V DC motor.

19

3 Digital Input

Probably the simplest form of interaction between a computer and the physical
world is for the computer to sense (i.e., measure) some property of the world.
Given that the internal representation of whatever thing we measure is going to
be binary, the easiest things to measure are those that are readily represented
in a binary system. Sensing opportunities that have this property are those
for which there are only two options.

For example, consider a proximity detector that is placed on an assembly
line. Its job is to determine whether or not there is a manufactured widget
in front of it (i.e., in the proximity of the sensor). The answer is either “yes”
or “no.” Another example would be an emergency stop button on that same
assembly line. In this case, a human is either pressing the button or not.
Again, the answer is either “yes” or “no.”

For each of these possible inputs, the information present can be repre-
sented inside the computer using a single binary bit, a 0 or a 1. The meaning
of 0 or 1 will depend upon the specifics of the measurement being made.
E.g., for the proximity detector, 0 might mean “not present” and 1 might
mean “present.” Likewise, for the emergency stop button, 0 might mean “not
pressed” and 1 might mean “pressed.”

3.1 Why Digital Inputs?

Note that the action that the computer will take in response to the example
sensor inputs above might very well be radically different. When the com-
puter senses the proximity detector input transitioning from “not present” to
“present,” it might simply increase an internal counter that is keeping track of
inventory. Alternatively, when the computer senses the emergency stop but-
ton transitioning from “not pressed” to “pressed,” its responsibility at that
point is likely to halt the motion of the assembly line (which it would likely do
via the use of a digital output). The bottom line is that the computer cannot

21

3. Digital Input

do any of these things unless it is making the relevant measurement in the
first place. Measuring some property of the physical world has enabled the
computer to do things it otherwise could not do.

3.2 Hardware

While the specific hardware required for any particular digital measurement is
clearly dependent upon the type of measurement that is being made, a com-
mon digital input is a pushbutton or a switch. Figure 3.1 shows a commonly
used circuit for interfacing a pushbutton to a microcontroller input pin.

Figure 3.1: Schematic diagram of circuit that interfaces a pushbutton input
to a microcontroller digital input pin.

In the figure, when the pushbutton is not being pressed, it creates an open
circuit (i.e., no current can flow), because the input pin of the microcontroller
is in a high impedance state when configured as an input, and the resistor pulls
the voltage at the input pin up to +5 V (the power supply voltage). When
the pushbutton is being pressed, it shorts the input pin to 0 V (ground). As
a result, the input pin has a low voltage potential when the button is pressed
and a high voltage when the button is not pressed.

This is an example of an active low design. The action is pressing the
button, which yields a low input voltage on the microcontroller input. It is
entirely reasonable to implement an active high design as well, which would
involve swapping the positions of the switch and the resistor in Figure 3.1.

22

3.3. Software

3.3 Software

As stated in Chapter 2, most of the pins on the microcontroller serve multiple
purposes, and it is our responsibility to configure the pin prior to use. To read
a digital input in software, we must first configure the pin as a digital input.

Configuring a digital input pin is accomplished using the pinMode() func-
tion. It takes two arguments, the first is an int identifying the pin number
and the second is an int indicating the pin mode. For the mode, the constants
INPUT or INPUT PULLUP indicate the pin is to be a digital input.

The typical use case is to use the INPUT pin mode. This would be the
appropriate mode to use for the circuitry depicted in Figure 3.1. However,
the use of a switch (or some other circuit) to actively pull the voltage low in
combination with a resistor that passively pulls the voltage high (i.e., an active
low design) is a use case that is fairly common. As a result, microcontrollers
often provide the resistor built-in to the chip, and the INPUT PULLUP mode
tells the microcontroller to enable the built-in pullup resistor. In this way, the
external resistor of Figure 3.1 is no longer needed, as the resistor is internal
to the microcontroller. Because of the availability of built-in pullup resistors
in many microcontrollers, active low inputs are a much more prevalent design
choice, versus the active high alternative.

Once the pin has been configured, the digitalRead() function is used to
perform the actual reading of the input. If the voltage at the pin is approxi-
mately 5 V (relative to the GND potential), then the digitalRead() function
returns the constant value HIGH (which is defined as a 1). If the voltage at
the pin is approximately 0 V, the the digitalRead() function returns the
constant value LOW (which is defined as a 0). If the voltage at the pin is near
the midpoint (≈ 2.5 V), the return value is indeterminate, and either a HIGH

or a LOW might result.1

Figure 3.2 gives an example sketch that repeatedly reads from a digital
input, writes the value to a digital output, and prints the value. Note that
in the sketch, value is declared as an int. This is because digitalRead()

returns HIGH or LOW, which are constants of type int.

1Actually, there are two values specified in the data sheet of the microcontroller that
more precisely describe how voltages at the input pin are interpreted. Any voltage less than
VIL will return a 0 in software and any voltage greater than VIH will return a 1 in software.
Voltages between VIL and VIH give indeterminate results.

23

http://www.arduino.cc/en/Reference/pinMode
http://www.arduino.cc/en/Reference/digitalRead
http://www.arduino.cc/en/Reference/digitalRead
http://www.arduino.cc/en/Reference/digitalRead
http://www.arduino.cc/en/Reference/digitalRead

3. Digital Input

const int diPin = 16; // digital input pin is 16

const int doPin = 17; // digital output pin is 17

int value = LOW; // input value

void setup() {

pinMode(diPin, INPUT); // set pin to digital input

pinMode(doPin, OUTPUT); // set pin to digital output

Serial.begin(9600);

}

void loop() {

value = digitalRead(diPin); // read the input

digitalWrite(doPin, value); // set the output to value

Serial.print("value = ");

Serial.println(value);

}

Figure 3.2: Example digital input sketch.

3.4 Example Digital Input Use Cases

3.4.1 Switch

The interfacing of a mechanical switch to a microcontroller digital input was
described in Section 3.2. Clearly, one use of mechanical switches is for user
input. Alternative uses include limit switches, relays, etc.

3.4.2 Proximity Detector

A proximity detector is an input sensor that is capable of determining whether
or not an object is within the “proximity” (nearby space) of the sensor. They
can be built using a large number of different physical phenomena, including
capacitive sensing, inductive sensing, optical sensing, radar, sonar, ultrasonics,
and Hall effect sensing.

3.4.3 Beam Sensor

A beam sensor, sometimes called a breakbeam sensor, is a sensor that trans-
mits a light beam (often infrared, or IR, so that it is not visible to humans)
across an open space. A receiver on the opposite side of that space either

24

3.5. Debouncing Mechanical Contacts

detects the transmitted beam (if there is nothing opaque in the light path) or
doesn’t detect the beam (if something is blocking the light path).

If the receiver is connected to a digital input pin, the microcontroller can
sense whether or not the beam is obstructed. Beam sensors are used fre-
quently to count objects moving down a production line or to ensure safety
for exclusion zones (e.g., an automatic garage door being closed will reverse
direction if the beam is broken).

3.5 Debouncing Mechanical Contacts

For the example use cases described in the previous section, we made the
simplifying assumption that the input value can be used effectively in the
form it comes to us from the external hardware. This is frequently the case,
however, it is not always true. Consider the waveform illustrated in Figure 3.3.
It was captured at the input pin of the circuit shown in Figure 3.1.

Figure 3.3: Oscilloscope trace illustrating input bounce.

The figure can be interpreted by understanding that the waveform shown
is a plot of voltage vs. time, where the pushbutton was depressed at the time
shown in the center of the figure. The vertical scale is 2 V/div, with 0 V shown
by the marker with a “1” (indicating channel 1) on the left edge. Note that
the initial signal voltage is therefore 5 V at the beginning of the waveform.

25

3. Digital Input

The horizontal scale is 200 µs/div, which implies that the change in the
signal voltage starts approximately 1 ms from the beginning of the waveform.
This is the time that the pushbutton was pressed. The result of pressing the
pushbutton is that the signal makes several rapid changes between 5 V and
0 V, eventually settling at 0 V.

The reason this signal “bouncing” occurs is that the physical switch has
mechanical contacts that, when pressed, come together, bounce apart, and
then come together again, multiple times. The physical bouncing occurs at
time scales of 10s of µs, while we are observing the signal over several hundred
µs (almost 2 ms). Compare this to the time scale of the microcontroller, which
executes multiple instructions every µs (approximately 16 instructions per µs
if the processor’s clock speed is 16 MHz).

Now consider what happens in the sketch shown in Figure 3.2. If the mi-
crocontroller loops fast enough, the output LED might flash on and off several
times before it settles to its final value (the same as the input). However, this
happens fast enough that we will never perceive it. We will only see the out-
put LED go on (or go off), we won’t see it flash on and off several times as it
transitions.

But consider what happens if the sketch isn’t just copying the input to the
output, but is instead counting the number of times the input goes from high
to low. In this case, one throw of the switch (which should be counted once
by the sketch) will end up being counted multiple times.

The above describes a circumstance that happens all too frequently when
a computer system is interacting with the physical world, especially sensing
some property about the physical world. The electro-mechanical interface
between the physical world and the microcontroller doesn’t always provide
information in a form that is immediately usable within software running on
the microcontroller. Instead, we must do some computation on the input
signal to ensure that it is in a form usable by the high-level software logic. In
this example, if we want to count the number of times the switch is thrown,
we need to “debounce” the raw input signal so that it correctly reflects the
number of times the switch is thrown, not the number of times the mechanical
contacts make or break the circuit due to bouncing.

For the switch bouncing illustrated in Figure 3.3, we observed that the
time scale over which the input changes is approximately 200 µs. If we do
some more investigation and conclude that the bouncing never lasts longer
than 2 ms, one approach to safely counting switch throws is to ensure that
the switch reads the same thing for 2 ms before the high-level software logic
interprets the switch as being that value. A sketch that uses this technique is
shown in Figure 3.4.

26

3.6. Hardware vs. Software

const int diPin = 16; // digital input pin is 16

int oldValue = 0; // previous input value

int newValue = 0; // current input value

int value = 0; // stable input value

void setup() {

pinMode(diPin, INPUT); // set pin to digital input

Serial.begin(9600);

}

void loop() {

newValue = digitalRead(diPin); // read the input

if (newValue == oldValue) {

value = newValue;

}

Serial.print("value = ");

Serial.println(value);

oldValue = newValue; // update old value

delay(2); // wait 2 ms

}

Figure 3.4: Debounce digital input.

In the sketch, the loop executes every 2 ms. Each loop, the digital input is
read, and compared to the value from the previous loop. Only when the two
values match is the input considered stable.

3.6 Hardware vs. Software

Let’s return to the economics requirement example of Chapter 1. If you recall,
Figure 1.3 (repeated here as Figure 3.5) is a hardware circuit, constructed
using logic gates, that implements the equation

E = AB + C (3.1)

which is the same as Equation (1.4).
While Figure 3.5 shows a design that computes the economics requirement

entirely in hardware, Figure 3.6 illustrates a design that computes the same
economics requirement entirely in software. In the sketch, the inputs A, B,

27

3. Digital Input

Figure 3.5: Gate-level schematic diagram of circuit that implements economics
course requirement check.

and C are provided as digital inputs (on pins 14, 15, and 16) and the output
E is made available as a digital output (on pin 17).

At the simplest level, this example illustrates the point that it is possible
to build a system that does some logic computation (in this case a check
of a student’s economics requirement) either in hardware or in software. It
is worthwhile to consider some of the differences between these two designs,
however.

1. The hardware design only performs the given function, while the soft-
ware design can have the logic changed without changing the physical
system (it does, of course, require a change to the software sketch). This
flexibility of function is one of the clear strengths of a design that relies
on software for the implementation of the logic.

2. Using modern technology to construct the hardware design, the delay
in updating E when one of the inputs changes is only a few nanosec-
onds, while the software version must execute a full iteration of the loop
(maybe a microsecond or more). Whether or not this difference in delay
is important is dependent upon the problem; however, it is fairly typical
that a software implementation of a design is frequently much slower
than a dedicated hardware implementation of the same design.

28

3.6. Hardware vs. Software

const int Apin = 14; // input pin for A

const int Bpin = 15; // input pin for B

const int Cpin = 16; // input pin for C

const int Epin = 17; // output pin for E

boolean A = false; // student has completed Econ A

boolean B = false; // student has completed Econ B

boolean C = false; // student has completed Econ C

boolean E = false; // student has completed economics requirement

void setup() {

pinMode(Apin, INPUT); // A, B, and C are digital input

pinMode(Bpin, INPUT);

pinMode(Cpin, INPUT);

pinMode(Epin, OUTPUT); // E is a digital output

}

// function to read input value and return as boolean type

boolean booleanDigitalRead(int pin) {

if (digitalRead(pin) == HIGH) {

return(true);

}

else {

return(false);

}

}

void loop() {

A = booleanDigitalRead(Apin); // read input values

B = booleanDigitalRead(Bpin);

C = booleanDigitalRead(Cpin);

E = (A && B) || C; // economics logic expressed in software

digitalWrite(Epin, E); // output result

}

Figure 3.6: Sketch that computes economics course requirement check.

29

4 Analog Output

In the previous two chapters, we have talked about outputs that have an
impact on the physical world, and we have talked about inputs that sense
or measure some property of the physical world. However, in both cases,
we only considered two possible values for the input or the output. Internal
to the microcontroller, we represented those values as 0 or 1. External to
the microcontroller, there were only two physical states represented, “on” or
“off,” LOW or HIGH voltage, “pressed” or “not pressed” for the emergency
stop button, “present” or “not present” for the proximity detector.

Clearly, there are many things we would like to consider controlling or
sensing by our microcontroller that have many more than just two values. If
I am controlling a motor, I would like the ability to tell it to run faster or
slower, not just run or not run. An analog output is an output signal that can
take on a range of values, not just two.

4.1 Why Analog Outputs?

The purpose of an analog output is to provide a continuously variable signal
for the purpose of influencing the external environment in some way. If the
analog output is connected to an LED, the brightness of the LED can be
directly controlled. If the analog output is connected to a motor, the speed of
the motor can be controlled. If the analog output is connected to a heating
element, the quantity of heat generated can be controlled. (This last example
won’t work well directly attaching a heating element to the microcontroller
pin, some power delivery circuitry is needed as well, but the principle is exactly
the same.)

31

4. Analog Output

4.2 Relating Analog Output Values to Physical Reality

A very common form of analog output used in many microcontrollers (includ-
ing the AVR microcontroller on an Arduino) is called pulse-width modulation
or PWM. PWM enables a digital output pin to, in effect, provide an analog
output value. This is accomplished by quickly changing the digital output
back and forth between HIGH and LOW, controlling the fraction of time that
the value is HIGH versus LOW so that that average value (averaged over time)
corresponds to the desired analog output value. In circumstances where the
desired changes in the analog output’s value are substantially slower than the
rate at which the digital output is being changed HIGH to LOW and LOW
to HIGH, this technique can work quite well.

The term pulse-width modulation comes from the fact that to control
the average value of the varying digital output, the microcontroller alters the
width of output pulses. This is illustrated in Figures 4.1 to 4.3. Each of these
figures shows a square wave, varying between 0 V and 5 V at a rate of 500 Hz
(for a period of 2 ms).

In Figure 4.1, the width of the pulse is 50% of the total period. As a result,
the average value of this output waveform is 2.5 V (it is 0 V for half of each
period and 5 V for half of each period).

In Figure 4.2, the width of the pulse has been decreased to 10% of the
period, giving an average value of 0.5 V (10% of 5 V). We have decreased the
pulse width as the controlling mechanism so as to effect the average value.

Figure 4.3 illustrates the control going the other direction. Here, the pulse
width has been set to 90% of the period, resulting in an average value of 4.5 V.
By controlling the width of the pulse, we can vary the average value of the
waveform so that it has any value we wish between 0 and 5 V.

Another term that describes the width of the pulse is the duty cycle, or
the fraction of total period that the digital output signal is HIGH. The duty
cycle for Figure 4.2 is 10%, for Figure 4.1 is 50%, and for Figure 4.3 is 90%.

For a PWM signal to work effectively as an analog output, the 500 Hz
square wave needs to be averaged. The desired output isn’t the square wave,
it is the average of the square wave. There are a number of options for doing
this in the circuits that are connected to the PWM output pin. One of those
options is a low-pass filter, a circuit that suppresses the 500 Hz signal but
allows the lower frequency signals (the average value) to pass through.

Using a simple filter that has a 20 ms time constant (i.e., 10 times greater
than the period of the PWM waveform), the output of the filter is shown on
the graph in Figure 4.4, along with the original square wave that is input to
the filter.

32

4.2. Relating Analog Output Values to Physical Reality

Figure 4.1: Pulse-width modulated analog output at 50% duty cycle.

Figure 4.2: Pulse-width modulated analog output at 10% duty cycle.

Figure 4.3: Pulse-width modulated analog output at 90% duty cycle.

33

4. Analog Output

0

1

2

3

4

5

0 2 4 6

P
W

M
 o

u
tp

u
t

(V
)

�me (ms)

Figure 4.4: Pulse-width modulated analog output at 50% duty cycle, also
showing a filtered output.

Next, consider what happens when we provide the waveforms described
above to an output pin wired to an LED as in Figure 2.3. In reality, the
LED is actually going on and off at a rate of 500 Hz. However, our eyes are
nowhere near responsive enough to observe these changes. A recent study
gave the fastest visual response measured to date as 13 ms [7]. Instead, our
eyes (and brain) respond to the average light intensity, in effect doing the
filtering job described above, and as the average value of the voltage varies
from low to high, we perceive the LED to be varying in intensity from low to
high. In other words, we have controlled the perceived intensity of the LED
on an analog scale.

In the above example, the averaging was going on in our visual perception,
our eyes and brain. This need not always be the case. If we are controlling
the heat generated by a resistive element, the averaging will happen in the
thermal response of the element (it is pretty unlikely to switch between hot
and cold in less than 2 ms). Each use case needs to be considered individually
to make sure that the averaging happens, and the mechanism might be quite
different in each case.

4.3 Software

There are several digital I/O pins on the AVR microcontroller that directly
support pulse-width modulated analog output functionality. Since the actual

34

4.4. Example Analog Output Use Cases

output is a quickly varying digital output, the pinMode() routine is used to
configure the pin to OUTPUT mode.

Once configured, the analogWrite() routine is used to control the analog
value that is output. The first argument is the output pin, and the second
argument is the analog value to be output (which can vary between 0 and
255).

Practice Problem What analogWrite() command will give the output
waveform of Figure 4.1? Figure 4.2? Figure 4.3?

Solution To achieve an output duty cycle of 50% (for Figure 4.1), the out-
put value should be 50% of 255, or 127. For a 10% duty cycle (matching
Figure 4.2), we need to use 10% of 255, or 25, and for a 90% duty cycle
(matching Figure 4.3), we need to use 90% of 255, or 229. Instructions to
accomplish each of these in succession are shown below:

const int aoPin = 3; // analog output pin is 3

...

analogWrite(aoPin, 127); // output 50% of full scale

...

analogWrite(aoPin, 25); // output 10% of full scale

...

analogWrite(aoPin, 229); // output 90% of full scale

4.4 Example Analog Output Use Cases

4.4.1 Variable Speed Motor

Depending on the current required for the motor, one of two circuits can be
used for a PWM output to drive a 5 V DC motor. If the motor current is less
than 30 mA (this is a very tiny motor), the motor can be driven directly from
the output pin of the microcontroller, as illustrated in Figure 4.5 (the same
as Figure 2.9 in Chapter 2).

If, on the other hand, the motor current is greater than 30 mA, but less
than 250 mA (this is much more common), the motor can be driven using a
transistor circuit as shown in Figure 4.6.

35

http://www.arduino.cc/en/Reference/pinMode
http://www.arduino.cc/en/Reference/analogWrite

4. Analog Output

μC
D0

M

Figure 4.5: Schematic diagram of directly connected 5 V DC motor.

Figure 4.6: Schematic diagram of 5 V DC motor driven by a transistor.

Note than in both schematic diagrams, there is a diode connected across
the terminals of the motor. This is important, since without it, there is a
very good chance the microcontroller output (when directly connected) or the
transistor (when it is used) will be damaged as the motor is turned on and
off. Since the motor is an inductive load, it does a very good job of averaging
the input square wave and responding to its mean (average) value.

The motor can be controlled as a digital output if desired. The statement

digitalWrite(pin,HIGH);

will turn the motor on, and the statement

digitalWrite(pin,LOW);

will turn the motor off.
More generally, we can control the speed of the motor by using a PWM

output. The statement

36

4.4. Example Analog Output Use Cases

analogWrite(pin,127);

provides half-power to the motor. Here, the averaging is happening in the
motor itself. It responds to the average value of the output.

4.4.2 Loudness

The use of a PWM output to control the volume of an audio signal is illustrated
in Figure 4.7. In this example, the audio input signal is sent through a variable
gain amplifier before being delivered to a speaker. The control input of the
variable gain amplifier is set by the microcontroller output pin.

μC
D0

Figure 4.7: Schematic diagram of PWM controlled audio amplitude.

Recall that the frequency of the PWM output is 500 Hz, which is well
within the frequency range of human hearing. Unlike the LED drive, in which
our eyes cannot respond to the speed of the pulses in the PWM signal, our
ears are more than capable of hearing at 500 Hz, and it would significantly
interfere with the signal being amplified. As a result, it is insufficient to rely on
the output device (e.g., the speaker) to smooth out the 500 Hz PWM pulses.

To address this issue, we insert a circuit between the PWM output pin
and the variable gain amplifier’s control input pin. This circuit averages the
voltage coming out of the microcontroller, and provides a stable signal to the
amplifier’s control input (smoothing out the 500 Hz variations). This type
of filter is called a low-pass filter, because it allows lower frequencies to pass
through the filter and blocks higher frequencies. The boundary between the
low and high frequencies is determined by the value of the resistor and the
capacitor in the filter.

37

4. Analog Output

Note in the example of Figure 4.4, the output of a filter with a time
constant of 20 ms (10 times the frequency of the PWM waveform) is illustrated.
It is clear that the output of the filter still has a varying signal at 500 Hz (i.e.,
filters are not perfect). A practical filter will have a much longer time constant
(e.g., 100 times the PWM frequency).

The volume of the audio signal sent to the speaker can now be controlled
as follows,

analogWrite(pin,volume);

where the value of volume can range from 0 (minimum gain) to 255 (maximum
gain).

38

5 Analog Input

Given that the previous three chapters have discussed digital output, digital
input, and analog output, what else could this chapter possibly cover? As you
have no doubt guessed by now, an analog input is a mechanism whereby a
continuous signal is input into a computer.

As with the analog outputs described in the previous chapter, it is not
possible to represent an infinitely varying signal in a computer, which is limited
to binary number representations. As a result, the continuously varying analog
signal is discretized as part of the analog input process. The subsystem that
does this is called an analog-to-digital converter (frequently shortened to A/D
converter). An A/D converter takes a continuous input (typically a voltage)
specified over a given range and translates that input into a (digital) binary
number.

We talk about the range of input values by specifying an analog reference
voltage (often designated VREF), and the nominal input range is therefore
between 0 and VREF V. The range of output values is specified by the number
of bits in the resulting binary number. If the A/D converter is described as
having n bits, the range of output values is 0 to 2n − 1, so an 8-bit A/D
converter’s output would range 0 to 255 (0 to 28 − 1). The output values
of the A/D converter are frequently called A/D counts, a convention we will
follow.

5.1 Why Analog Inputs?

The purpose of analog inputs is fairly straightforward. Any physical measure-
ment that has a range of possible values is a candidate for using an analog
input. This might include temperature, distance, pressure, mass, humidity,
acceleration, brightness, pH, force, or any other measurement you might want
to consider.

39

5. Analog Input

5.2 Counts to Engineering Units

With a 10-bit A/D converter, the values that can result from a conversion
range from 0 to 1023 (0 to 210 − 1). Rarely, however, are we interested in the
raw values from the A/D. More often, we wish to convert those raw values
(called A/D counts) into engineering units that are meaningful in terms of the
physical measurement made in the real world.

Consider the analog input shown in Figure 5.1. It shows a physical sensor
(let’s assume in this case it is a weight scale), some amplification or signal
conditioning, and an input into one of the analog input pins of the microcon-
troller.

Figure 5.1: General analog input.

5.2.1 Input Range and Linear Transformation

The transformation from weight (in lbs) to voltage (in V, at the analog input
pin) is shown in Figure 5.2. For this combination of weight scale and signal
conditioning circuitry, at 0 lb the analog voltage is 200 mV and at 100 lb the
analog voltage is 4500 mV. This relationship is shown in the figure, with the
weight on the x-axis and the analog voltage signal shown on the y-axis, and
can be represented mathematically as

s =
(4500− 200)

(100− 0)
· w + 200

s = 43
[
mV
lb

]
· w + 200 [mV] (5.1)

where s is the analog signal (in mV) and w is the measured weight (in lb).
The units for each of the equation coefficients are enclosed in square brackets.

With a 5 V analog voltage reference, the A/D converter maps 0 V input to
0 A/D counts and 5 V input to 1023 A/D counts. This relationship is shown
in Figure 5.3. In the figure, the x-axis shows the analog input signal and
the y-axis shows the A/D counts. The two points shown correspond to the

40

5.2. Counts to Engineering Units

Figure 5.2: Analog circuit response.

values associated with 0 lb on the sensor (200 mV, 41 A/D counts) and 100 lb
on the sensor (4500 mV, 921 A/D counts). This relationship is represented
mathematically as

c =
(1023− 0)

(5000− 0)
· s+ 0

c = 0.2046
[
cnt
mV

]
· s (5.2)

where s is again the analog signal (in mV) and c is the A/D counts (cnt).

Figure 5.3: Analog to digital converter response.

41

5. Analog Input

Table 5.1: Parameters for analogReference().

Parameter Analog Reference Voltage

DEFAULT 5 V
INTERNAL 1.1 V
EXTERNAL AREF pin value

Note: These values are for the Arduino Uno and vary for other platforms.

The complete response can now be represented mathematically by substi-
tuting Equation (5.1) into Equation (5.2).

c = 0.2046 · s
c = 0.2046 · (43 · w + 200)

c = 8.7978
[
cnt
lb

]
· w + 40.92 [cnt] (5.3)

While the above equation describes the A/D counts that will result for a
given weight, we are actually interested in the opposite direction. The software
would like to know the weight, and what it has are counts. We can get that
by simply inverting Equation (5.3).

w = 0.1136648
[

lb
cnt

]
· c− 4.6512 [lb] (5.4)

This gives weight (in lbs) given A/D counts.

The above example makes the implicit assumption that the range of A/D
counts (which is 0 to 1023) happens over an input voltage range of 0 to 5 V.
This is not always the case. The top end of the voltage range (that corresponds
to 1023 A/D counts) is adjustable. We will see how to do this in the following
section.

5.3 Software

Figure 5.4 shows a sketch that utilizes the analog input hardware described in
the previous section. The scale of the analog range is set using analogReference().
With the parameter DEFAULT, the analog input range is configured to be 0 to
5 V. Table 5.1 shows other possible settings.

The loop() code reads the analog input value, converts the value into
engineering units (lbs in this case) using Equation (5.4), and prints both the
A/D counts and the weight.

42

http://www.arduino.cc/en/Reference/analogReference
http://www.arduino.cc/en/Reference/analogReference
http://www.arduino.cc/en/Reference/loop

5.4. Example Analog Input Use Cases

const int aiPin = 14; // analog input A0 is pin 14

int rawValue = 0; // raw input value

float weight = 0.0; // weight in lbs

void setup() {

analogReference(DEFAULT); // set analog range

Serial.begin(9600);

}

void loop() {

// read the input

rawValue = analogRead(aiPin);

// compute weight

weight = (float)(0.1136648 * rawValue - 4.6512);

// print results

Serial.print("Raw value = ");

Serial.print(rawValue);

Serial.print(" Weight = ");

Serial.print(weight);

Serial.println(" lbs");

}

Figure 5.4: Example analog input sketch.

5.4 Example Analog Input Use Cases

In this section, we will illustrate the use of analog inputs for three different
purposes. To illustrate a variety circumstances, each use case will have some
unique property built into the example.

5.4.1 Temperature

This first example illustrates the use of a different reference voltage, which is
set using the analogReference() call.

Consider a temperature probe that generates an output voltage with the
following parameters: 10 mV/◦C voltage change with temperature and 0 V at
0 ◦C. We are interested in measuring liquid water, so the range of temperatures
we need to consider are 0 to 100 ◦C. The above lets us construct an equation

43

http://www.arduino.cc/en/Reference/analogReference

5. Analog Input

for the voltage response of the probe as follows:

s = 10
[
mV
◦C

]
· t (5.5)

where s is the analog voltage signal into the A/D converter and t is the
temperature in ◦C.

If we use INTERNAL as the parameter to analogReference(), the top of
the voltage range is 1.1 V, which will be just above the highest temperature
we wish to read (1000 mV at 100 ◦C). The conversion from analog voltage to
A/D counts is therefore

c =
(1023− 0)

(1100− 0)
· s (5.6)

c = 0.93
[
cnt
mV

]
· s (5.7)

which gives

c = 0.93 · (10 · t) (5.8)

c = 9.3
[
cnt
◦C

]
· t (5.9)

as the expression for A/D counts given temperature, and

t = 0.1075
[◦C
cnt

]
· c (5.10)

as the expression for temperature given A/D counts. The code to convert
A/D counts into engineering units (temperature in ◦C) is therefore

temp = (float) (0.1075 * rawValue);

where temp is a float representing temperature and rawValue is an int that
has the raw A/D count value.

5.4.2 Level

This second example shows an analog input in which the increasing signal
goes the opposite direction. Consider the liquid level sensor of Figure 5.5. In
this example the height of the liquid vessel is 4 cm, and the top of the sensor
is 5 cm above the bottom of the vessel. The sensor circuit’s voltage response
is 1 V/cm, measured from the top of sensor to the level of the liquid in the
vessel.

As a result of this mode of operation, the circuit will read 5 V (5000 mV)
when the vessel is empty and 1 V (1000 mV) when the vessel is full. We are

44

http://www.arduino.cc/en/Reference/analogReference

5.4. Example Analog Input Use Cases

Figure 5.5: Liquid level measurement.

interested in knowing the level of the liquid in the vessel. We can express the
voltage signal, s, as a function of liquid level, L, as follows.

s =
(1000− 5000)

(4− 0)
· L+ 5000 (5.11)

s = −1000
[
mV
cm

]
· L+ 5000 [mV] (5.12)

using the points (0 cm, 5000 mV) and (4 cm, 1000 mV) to define the linear
response. Returning to a 5 V reference, this equation gets substituted into
Equation (5.2) to yield

c = 0.2046 · (−1000L+ 5000) (5.13)

c = −204.6
[
cnt
cm

]
· L+ 1023 [cnt] (5.14)

as the expression for A/D counts given level, and

L = −0.0048876
[
cm
cnt

]
· c+ 5 [cm] (5.15)

as the expression for level given A/D counts. The code to convert A/D counts
into engineering units (level in cm) is therefore

level = (float)(-0.004876 * rawValue + 5);

where level is a float representing the liquid level in cm.
Note that this analog reading really does work the same as the previous two

examples (sensing weight and temperature), with the only distinction being
that the slope of the response curve is negative. Therefore, the A/D counts
go down as the liquid level goes up.

45

5. Analog Input

5.4.3 Acceleration

In addition to using the internal A/D converter, it is often the case that we
interface a microcontroller to other subsystems that have been optimized for
a particular purpose. In the microcontroller world, we frequently use what
is known as the I2C bus to connect the microcontroller to peripheral devices,
such as sensors and actuators.

As an example, the MMA8451Q is an integrated circuit (manufactured
by Freescale) that functions as an accelerometer. The block-level diagram
and directional reference are shown in Figure 5.6, which are reproductions of
Figures 1 and 2 of the part’s data sheet.

Figure 5.6: Block diagram and directional reference for Freescale MMA8451Q
accelerometer(from the data sheet).

46

5.4. Example Analog Input Use Cases

Observe that the part is actually noticeably more complex than our Ar-
duino processor. It has a built-in processor of its own (that performs the
“embedded DSP functions” on the block diagram), in addition to three trans-
ducers (oriented along each axis), analog-to-digital conversion, and various
support functions.

The A/D converter that is built in to the accelerometer is 14 bits, so the
values range from 0 to 8191 (0 to 214 − 1). In addition, the processor that
is built in to the accelerometer will perform the scale conversions, return-
ing acceleration in m/s2. In either case, we access the information from the
accelerometer using libraries provided by the manufacturer.

47

6 Timing

There are lots of ways to reason about the passage of time in computer systems,
generally. At one end of the spectrum, how much time a program takes to
execute is only an issue if it becomes long enough to be distracting to the
user. For example, if the task of a program is to add the value of someones
assets and subtract the value of his/her debts to determine net worth, until the
program takes longer to run than it takes the human to enter the program’s
inputs and observe the program’s outputs, how long it takes to run is almost
irrelevant. As a user, what do I care if it completes in 1 millisecond or in
10 milliseconds? TV screens take more than 30 milliseconds to update each
frame, and to our human eyes that looks like smooth and continuous motion.

If the amount of time that a program takes to execute is primarily a matter
of convenience for the user, we refer to the execution time as a non-functional
property of the program (i.e., it is not part of the function that the program is
expected to perform). Another way to say this is that how long the program
takes to run is not formally part of the correctness criteria of the program. It
is judged to be providing a correct answer even if it takes a long time to get
to that answer.

At the other end of the spectrum, there are computer programs for which
when they provide a result is just as important as the value that they provide.
Consider a computer program that is managing the flight control surfaces on
a high-performance aircraft. If the program tells the aileron to move up (e.g.,
because the pilot has moved the control stick), but provides that output too
late, the aircraft can crash. This is a much more serious result than simply
user inconvenience.

When time is an explicit component in the correctness criteria (i.e., time
is a functional property), we refer to it as a real-time program. Real-time
programs are often divided into two classes. The first, called hard real-time,
are those for which serious dire consequences will result if some timing deadline
is missed. This would be the case for our aircraft control example above.
The second, called soft real-time, are those for which there is some degree

49

6. Timing

of slack, or forgiveness, in the timing requirements. A good example here
is video playback. If you are watching a video and one or two individual
frames are missing, you will never perceive it and the playback experience will
be a positive one (at approximately 30 frames per second, you’ll never miss
it). It is not until lots of frames are missing (or delayed) that you will start
complaining about the viewing experience. Here, timeliness is clearly part
of the correctness criteria for the playback software. However, occasionally
missing a few of the timing specifications isn’t a life-and-death matter.

For computer systems that interact with the physical world, it is quite
common for timing to be an important part of the functional properties of
the programs we run. Sometimes they might be hard real-time specifications,
other times they might be soft real-time requirements. Most of the time,
however, they will include time in some way.

6.1 Execution Time

Any computer program takes time to execute. As described in Chapter 10, it
is physically possible to count the individual instructions that the computer
executes, and if you know how much time each instruction takes, it is possible
to know (with surprisingly good precision) how long a computer takes to
execute a specific instruction sequence.

There are two major problems with this approach in practice. First, in
many cases we do not know ahead of time how many instructions will execute.
As soon as there is a conditional branch in our program (e.g., an if...then

statement or a while loop) for which the condition is dependent upon some
input value, then different runs of the program will have different numbers of
instructions to execute.

Second, only on the simplest processors do we actually know how much
time each instruction takes to execute. On modern processors, there are a
whole host of reasons why each instruction can take more or less time to
execute. Variations in memory access time, execution pipeline bubbles, out-
of-order execution, and contention for needed resources are but a few of the
causes that limit our ability to know how much time each instruction takes
before it is complete.

As a result, counting of instructions is only very rarely used as an effective
mechanism for managing time within programs. In virtually all processors,
from the most advanced multicore to the simplest microcontroller, there are
dedicated circuits that are tasked with the job of measuring the passage of
time. A simple example is a free-running counter that is incremented at a

50

6.2. Controlling Time

given frequency. If the counter updates at 1 MHz, each microsecond (µs) the
counter value increases by 1. (If f is the frequency, 1 MHz or 1,000,000 Hz
in this case, and T is the period, then T = 1/f = 1 µs.) The pseudocode
in Figure 6.1 then enables the program to know how much time has elapsed
between two different points in the code (e.g., before and after a section of
code we want to know how long it takes to execute).

startTime = readFreeRunningCounter()

// execute timed code

endTime = readFreeRunningCounter()

runTime = endTime - startTime

Figure 6.1: Measuring elapsed time with a free-running counter. The vari-
able runTime indicates the execution time of the timed code, in time units
dependent upon the free-running counter’s frequency.

In the Arduino C environment, there are two functions that are available to
access the free-running counter on the microcontroller. The first, millis(),
returns the number of milliseconds since the last processor reset, and the
second, micros(), returns the number of microseconds since the last processor
reset. Both functions return a long int type since an int will quickly run
out of space to store sufficiently large values (see Chapter 8).

6.2 Controlling Time

The discussion above enables us to measure the elapsed time of a section of
code; however, frequently the task is to ensure that actions in a program take
a specific amount of time, or happen at a given rate. A simple example is
the flashing LED of Chapter 2, the code for which is repeated in Figure 6.2.
This sketch does a reasonable job flashing the LED at 1 Hz. The delay() call
takes one argument, the number of milliseconds to delay, and returns from the
call approximately that many milliseconds later. We’ve used this technique
several times already, not only in Chapter 2.

There are a pair of (related) limitations to this method of managing time
within a program. The first limitation is that this loop will not really run at
1 Hz. Invariably, it will run somewhat slower than 1 Hz (i.e., the total time to
execute the loop will be something more than 1 second). This is because there
are instructions to be executed in the loop that are outside of the delay() call,
and those instructions take time to execute. Both calls to digitalWrite()

51

http://www.arduino.cc/en/Reference/millis
http://www.arduino.cc/en/Reference/micros
http://www.arduino.cc/en/Reference/delay
http://www.arduino.cc/en/Reference/delay
http://www.arduino.cc/en/Reference/digitalWrite

6. Timing

const int doPin = 17; // digital output pin is 17

void setup() {

pinMode(doPin, OUTPUT); // set pin to digital output

}

void loop() {

digitalWrite(doPin, HIGH); // set the output HIGH

delay(500); // wait for 0.5 s (500 ms)

digitalWrite(doPin, LOW); // set the output LOW

delay(500); // wait for 0.5 s

}

Figure 6.2: Simple timing loop.

are outside of delay(), and there is some non-zero overhead associated with
the loop() construct as well.

The second limitation is that the 1 second loop time will grow any time
additional functionality is added to the loop. Consider the addition of a single
line of code,

Serial.println(millis());

which will print the current value of the free-running counter. By observing
the sequence of counter values printed, we can then discern actually how long
it takes to execute the loop. Since this new code takes additional time to
execute, the amount of time spent in the loop has now been altered. Not
only is it never going to be precisely 1 second, the amount that it grows from
1 second is dependent upon things like adding diagnostic statements.

Note that the timing errors that result from extra code execution accu-
mulate from one loop to the next. Once we get behind, we never catch back
up. We only get further and further behind. There is, of course, a better way
to do this, and the next section describes a technique for controlling time in
software that is dramatically more robust. It doesn’t fix everything, but it
works considerably better than the methods described above.

52

http://www.arduino.cc/en/Reference/delay

6.3. Delta Time

6.3 Delta Time

The use of the delay() routine to control time has the issues described above,
that all the code that is outside the delay() call isn’t accounted for in the
elapsed time for the loop. We will next examine a more robust timing ap-
proach, called delta time, that avoids some (but not all) of these issues.

Like the example above, we will assume that the task at hand is to execute
the loop once per second. We will simplify the task by no longer having
multiple timed events within the loop, but only concern ourselves with the
total loop time. The code to implement the delta time approach is shown in
Figure 6.3.

const long deltaTime = 1000; // loop period (in ms)

long loopEndTime = deltaTime;

void setup() {

}

void loop() {

if (millis() >= loopEndTime) { // one period is complete

loopEndTime += deltaTime;

// code to be executed once per iteration

}

}

Figure 6.3: 1 Hz timing loop using delta time techniques.

Consider how this timing approach works. We maintain a variable that
indicates when the next 1 s period will be complete, loopEndTime. When the
free-running counter has exceeded this value, we know that our loop period
has elapsed. When this happens, we update the end-of-loop time and proceed
to run the code that should execute once per loop.

This is different than the delay() based approach above in several ways.
First, as long as the code that is executed once per loop (call it an iteration)
doesn’t take longer than 1 s to run, the code within the if condition will faith-
fully execute once per second. This is true whether the “once per iteration”
code takes 1 microsecond, 10 milliseconds, or 900 milliseconds. As long as it
is less than 1 second, the timing is preserved.

Second, even an occasional excursion beyond 1 s by the “once per iteration”
code doesn’t necessarily have dire consequences. While the next iteration will

53

http://www.arduino.cc/en/Reference/delay
http://www.arduino.cc/en/Reference/delay
http://www.arduino.cc/en/Reference/delay

6. Timing

be delayed (by the amount the previous iteration was late in finishing), the
logic of updating the loopEndTime by deltaTime each iteration ensures that
subsequent iterations will revert to the once per second intended rate. This
is reasonable operation for many soft real-time tasks (although it is certainly
not sufficiently robust for hard real-time operation).

The approach of Figure 6.3 is not the only possible design for delta timing.
There are a number of possible designs, each with slightly different properties
(primarily of what happens when the timing isn’t perfect, or an iteration is
late). For example, in Figure 6.3, if an individual iteration is late, the next
iteration will be back on the original schedule (i.e., 2 s after the start of the
late iteration). Sometimes that isn’t what we want to happen. Figure 6.4
illustrates an alternative design that has slightly different properties when an
iteration is late. It also introduces another common convention, which is that
we make a call to millis() once per loop, retaining the result of the call, and
then use that value throughout the loop. This ensures that “time” (i.e., the
software’s concept of what time it is) doesn’t change in the middle of loop().

const long deltaTime = 1000; // loop period (in ms)

long loopEndTime = deltaTime;

long currentTime = 0;

void setup() {

}

void loop() {

currentTime = millis();

if (currentTime >= loopEndTime) { // one period is complete

loopEndTime = currentTime + deltaTime;

// code to be executed once per iteration

}

}

Figure 6.4: Alternative 1 Hz timing loop using delta time techniques.

In this sketch, if an iteration is late, the 1 s time period restarts at the
beginning of the next iteration. This is because we’ve added deltaTime not
to the scheduled loopEndTime, but instead to the currentTime, which might
be later than loopEndTime. I.e., the 1 s period restarts rather than tries to
catch up.

54

http://www.arduino.cc/en/Reference/millis

6.4. Multiple Time Periods

The difference between the above two designs is illustrated in the timeline
of Figure 6.5. In the figure, time is increasing to the right. Rectangles rep-
resent work performed during an iteration, the top line represents design A
(from Figure 6.3), and the lower line represents design B (from Figure 6.4).

Figure 6.5: Timing diagram showing impact of two different designs for late
iterations when using delta time techniques.

You can see that for the first four iterations, both designs do the same
thing. The first three iterations are on time, the third iteration (starting at
time 2 s) runs long, causing the fourth iteration to start at time 3.5 s. So far
so good, but what happens next?

What happens next is that design A does its best to get back on the
original schedule, with iterations starting aligned with each second (i.e., 4 s,
5 s, etc.). Design B doesn’t do that, however. Instead, it starts a new 1 second
period at time 3.5 s, so the next and subsequent iterations start 0.5 s later, at
4.5 s, 5.5 s, etc.

Either of these two designs can be appropriate, depending upon the specific
task that is trying to be accomplished. This is one more case in which the
correctness of a design depends not just on what goes on in software, but also
what is going on in the real physical world and when.

We are now in a position to re-implement the simple LED flashing sketch
from Figure 6.2 using delta timing. Figure 6.6 shows the revised sketch. Note
that the loop period is now 0.5 s, and there is a new state variable, LEDState,
to keep track of whether or not the LED is currently on.

6.4 Multiple Time Periods

One of the advantages of the delta time approach is its ability to generalize to
multiple timing loops in a fairly straightforward manner. Consider the sketch
of Figure 6.7, which supports two distinct things happening with two different
time periods. Period A is 200 ms (5 times per second) and period B is 500 ms
(2 times per second).

55

6. Timing

const int doPin = 17; // digital output pin is 17

int LEDState = LOW; // current LED output value

const long deltaTime = 500; // loop period (in ms)

long loopEndTime = deltaTime;

void setup() {

pinMode(doPin, OUTPUT); // set pin to digital output

digitalWrite(doPin, LEDState);

}

void loop() {

if (millis() >= loopEndTime) { // one period is complete

loopEndTime += deltaTime;

LEDState = !LEDState; // toggle LED state

digitalWrite(doPin, LEDState);

}

}

Figure 6.6: LED flash using delta timing techniques.

Notice that there isn’t anything resembling a free lunch here. If both loops
trigger at the same time (which they will in this example once per second),
the code for the 500 ms period will execute after the code for the 200 ms
period. If the code for the 200 ms period takes a significant length of time,
the 500 ms code will be late. Whether or not this is a problem will, of course,
depend on the overall properties of the system.

56

6.4. Multiple Time Periods

const long deltaTimeA = 200; // loop period A (in ms)

const long deltaTimeB = 500; // loop period B (in ms)

long loopEndTimeA = deltaTimeA;

long loopEndTimeB = deltaTimeB;

long currentTime = 0;

void setup() {

}

void loop() {

currentTime = millis();

if (currentTime >= loopEndTimeA) { // period A is complete

loopEndTimeA += deltaTimeA;

// code to be executed once per 200 ms

}

if (currentTime >= loopEndTimeB) { // period B is complete

loopEndTimeB += deltaTimeB;

// code to be executed once per 500 ms

}

}

Figure 6.7: Two timing loops using delta time techniques.

57

7 Design Patterns

While we have been discussing design throughout the book, it is worth noting
that one of the ways that we can implement good designs is to follow the lead
of good designers that preceded us. Artists of every form, from musicians
to painters, like to give credit to those who preceded them and provided
inspiration, guidance, and examples to follow. As designers of computing
systems, we shouldn’t be any different. In this chapter, we will introduce
some design patterns that are worthwhile to emulate.

7.1 Finite-State Machines

One of the design patterns that sees quite a bit of use is a finite-state ma-
chine (FSM), also called a finite-state automaton. An FSM is a computational
abstraction in which things in the machine to be remembered are represented
by individual states, and there are a finite number of states (hence the name).

The FSM abstraction can be quite useful, helping to keep a design man-
ageable and straightforward to reason about. We will introduce the concept
of a finite-state machine with a simple example. Consider the operation of a
super-simple vending machine. There is only one thing for sale, and it costs
20¢. The vending machine can only accept nickels and dimes (no pennies,
quarters, half-dollars, dollar coins, or bills). Also, it doesn’t provide change
(see, we said it was super simple, we weren’t kidding).

A finite-state machine diagram that describes the operation of our vending
machine is shown in Figure 7.1. It has 4 states, which are represented in the
diagram as circles. Sometimes, this type of finite-state machine diagram is
called a bubble diagram, with the circles representing individual states being
called state bubbles. The table below the diagram gives the meaning associated
with each state. In our case, the vending machine needs to remember how
much money has been deposited so far (i.e., what is the accumulated value).
One state (in our case, the “0¢” state in the upper left of the diagram) is

59

7. Design Patterns

identified as the initial state, which is where the finite-state machine starts.

State Meaning

0¢ $0.00 accumulated value (initial state)
5¢ $0.05 accumulated value
10¢ $0.10 accumulated value
15¢ $0.15 accumulated value

Figure 7.1: Vending machine finite-state diagram.

When someone who is trying to buy the item for sale inserts an individual
coin, the operation of the FSM is indicated by the directed edges (arcs with
arrowheads) that are labeled with the possible inputs. In this case, the possible
inputs are two kinds of coin: (1) a nickel (shown as the label “5¢”) or (2) a
dime (shown as the label “10¢”). In this example, we are using common labels
for both states and inputs (e.g., “5¢” is the name of both a state, representing
5 cents of accumulated value, and an input, representing a nickel). We can keep
them apart in our mind by making sure we identify which one we’re referring
to each time. Alternatively, we could rename one or the other. The primary
purpose of the names of both states and inputs is human understanding, so
we can call them whatever we wish. In the implementation that is discussed
below, we will use distinct labels for states and inputs.

Note that the abstraction only supports one input at a time. When the
input arrives (coin is deposited), the FSM follows the edge indicated by the
appropriate label, ending up in a new state. From the initial state, “0¢”, if
our customer inserts a nickel, the FSM moves to the state “5¢”. Alternatively,
if our customer inserts a dime, the FSM moves to the state “10¢”.

Now, in a new state, the FSM is ready to receive another coin. If, for
example, the first coin was a nickel and we are now in the state “5¢”, if the
next coin is another nickel, we will go to the state “10¢”, and if the next coin

60

7.1. Finite-State Machines

is a dime, we will go to the state “15¢”.
There is an important principle worth noting at this point. If the first

coin was a dime, the FSM ended up in the state “10¢”, and if the first and
second coins were both nickels, the FSM also ended up in the state “10¢”. The
memory of how the FSM got to the state “10¢” is not retained, however. The
FSM only “remembers” that the accumulated value to this point is 10 cents,
not whether it came in the form of a dime or two nickels.

If we are in the state “10¢” and the next coin is a dime, the customer
has provided enough money to buy what we are selling, so the transaction
can be completed (e.g., the vending machine can deliver the item), and the
FSM can return to the state “0¢” so as to be ready for the next sale. In the
diagram, we are only showing the state transition(s) to state “0¢”, not the
sales. However, it is possible to show that kind of information on a finite-state
machine diagram as well (and we will do so in a later example).

Practice Problem If we start in the initial state “0¢” and three inputs are
“5¢”, “5¢”, and “5¢”, which states are visited after the first two inputs and
what is the final state?

Solution After the first “5¢” input, the FSM is in the state “5¢”. After the
second “5¢” input, the FSM is in the state “10¢”. After the third “5¢” input,
the final state is “‘15¢”.

As described so far, the finite-state machine is just a computational ab-
straction. We can implement the finite-state machine in multiple ways. Just
like we did in Chapter 3, where we were able to implement the logic for test-
ing the economics requirement either in hardware or in software, we have the
same options available to us for implementing finite-state machines. Whether
constructed using hardware or software, the same computational abstraction
is used.

Here, we will stick with a software implementation, which is shown in
Figure 7.2. The state of the FSM is retained in a variable, FSMstate, which
can have one of the following values:

STATE_0_CENTS STATE_5_CENTS STATE_10_CENTS STATE_15_CENTS

and has initial value STATE 0 CENTS. There are several design choices for how
to do this, but we will illustrate it with the use of an enumeration.

61

7. Design Patterns

enum state {

STATE_0_CENTS,STATE_5_CENTS,STATE_10_CENTS,STATE_15_CENTS}

};

state FSMstate = STATE_0_CENTS;

In the code provided in the figure, the routine vend() is invoked when an
item has been sold. The loop executes the logic of the FSM. It first receives
a coin, into inputCoin, and then decides what to do (what is the next state,
and whether or not a sale has been completed) based on the current state
and the value of the coin.

In this example, a switch statement is used to separate the logic for each
state (one case per state), and if statements are used to distinguish different
input coins. However, there is no requirement that it be implemented this
way. We could have used switch statements for both state and input, for
example.

At the bottom of the loop, the current state, FSMstate is updated to take
on the value of the next state, nextFSMstate, and the loop repeats.

While the code in Figure 7.2 faithfully represents the functionality rep-
resented by the FSM diagram in Figure 7.1, notice how much easier it is to
follow what is going on in the diagram (as opposed to the code). The abstract
representation of the diagram is much clearer, less error-prone, and definitely
the preferred way to communicate the operation of the vending machine to
humans.

For example, what if we wanted to make a small change to the way the
vending machine operates. Our current design doesn’t support the return of
change to the customer. For example, if we are in state “15¢” and the customer
inserts a dime, the sale is made (and the FSM returns to state “0¢”), but the
fact that the customer actually provided 25 cents is ignored.

In our alternative vending machine, shown in Figure 7.3, if the customer
provides 25 cents, the 5 cents in change is made available to the next customer
(OK, this really is pretty silly, but we are just illustrating a point here). In
the FSM diagram, this is accomplished by simply adding one more edge (from
the state “15¢” to the state “5¢”) and changing the appropriate labels on the
edges outbound from the state “15¢”.

62

7.1. Finite-State Machines

void loop () {

inputCoin = inputNextCoin();

switch (FSMstate) { // code to implement FSM

case STATE_0_CENTS:

if (inputCoin == NICKEL) {

nextFSMstate = STATE_5_CENTS;

}

if (inputCoin == DIME) {

nextFSMstate = STATE_10_CENTS;

}

break;

case STATE_5_CENTS:

if (inputCoin == NICKEL) {

nextFSMstate = STATE_10_CENTS;

}

if (inputCoin == DIME) {

nextFSMstate = STATE_15_CENTS;

}

break;

case STATE_10_CENTS:

if (inputCoin == NICKEL) {

nextFSMstate = STATE_15_CENTS;

}

if (inputCoin == DIME) {

nextFSMstate = STATE_0_CENTS;

vend();

}

break;

case STATE_15_CENTS:

nextFSMstate = STATE_0_CENTS;

vend();

break;

}

FSMstate = nextFSMstate;

}

Figure 7.2: Source code for vending machine FSM controller.

63

7. Design Patterns

State Meaning

0¢ $0.00 accumulated value (initial state)
5¢ $0.05 accumulated value
10¢ $0.10 accumulated value
15¢ $0.15 accumulated value

Figure 7.3: Alternative vending machine finite-state diagram.

Practice Problem The modification of the FSM only impacts the activity
in state “15¢”. Alter the source code, starting at the line STATE 15 CENTS:,
to implement this change.

Solution The lines of code following STATE 15 CENTS: are now as follows:

case STATE_15_CENTS:

if (inputCoin == NICKEL) {

nextFSMstate = STATE_0_CENTS;

}

if (inputCoin == DIME} {

nextFSMstate = STATE_5_CENTS;

}

vend();

break;

}

Notice how by using an appropriate computational abstraction, a finite-
state machine, simple changes to the functionality of the vending machine
can be communicated with simple changes to the FSM diagram. In the next

64

7.1. Finite-State Machines

example, we will expand the notion of the FSM computational abstraction to
include output functionality as well (which was in the code for our vending
machine example, but wasn’t shown on the FSM diagram).

One of the things that finite-state machines are really good at is deciding
whether or not a sequence of input symbols (i.e., characters) match a specified
pattern. Take, for example, a Social Security Number (SSN). It typically is
written in the following form:

xxx-xx-xxxx

where each x in the above notation represents a decimal digit between 0 and
9. The diagram of Figure 7.4 illustrates an FSM that recognizes streams of
input characters when they match this pattern.

State Meaning

A Waiting for digit no. 1 (initial state)
B Received 1st digit, waiting for digit no. 2
C Received 2nd digit, waiting for digit no. 3
D Received 3rd digit, waiting for dash no. 1
E Received 3 digits and 1st dash, waiting for digit no. 4
F Received 4th digit, waiting for digit no. 5
G Received 5th digit, waiting for dash no. 2
H Received 5 digits and 2 dashes, waiting for digit no. 6
I Received 6th digit, waiting for digit no. 7
J Received 7th digit, waiting for digit no. 8
K Received 8th digit, waiting for digit no. 9

Figure 7.4: SSN finite-state machine diagram.

65

7. Design Patterns

The states in this FSM are labeled A through K, and the meaning of each
state is provided in the table below the diagram in the figure. The initial state
is A. The are several important things different about this FSM diagram as
compared to the diagrams we have seen so far, and they all relate to the labels
on the edges. First, we have introduced a shorthand notation for indicating a
range of characters. Take a look at the label on the edge from state A to state
B. We wish to move from A to B for any character in the range 0 to 9, and this
is indicated in the diagram with the notation [0-9].

Second, for any character not in the range 0 to 9, we want to follow the
other edge (which is a self-loop back to A). This is denoted by the - symbol
(right before the /, which we’ll address next). The - symbol can be interpreted
to mean “an input not specified on some other outgoing edge from this state.”

Third, for this self-loop edge (from A to A), after the input designation of
- there is a / followed by the note err. The notation after the / indicates
an output of the finite state machine. In this case, we are indicating than
an error has occurred (i.e., the input sequence is not in the form of an SSN).
Notice that when in state K, both outbound edges return to state A, and what
distinguishes these two edges is whether or not we have an error (the edge
with label -/err) or we have successfully recognized an SSN (the edge with
label [0-9]/accept). Edges without a / don’t generate any output when the
edge is traversed by the FSM implementation.

Fourth, given that the - symbol represents “anything else” as an input
character, when we are explicitly expecting a hyphen (e.g., when in state D)
we denote that input symbol by putting it in quotes (i.e., "-").

Fifth, while the / is used pretty universally to separate input symbols from
output actions in finite-state machine diagrams, we pretty much made up the
rest of the notation. Some designate ranges with a colon (e.g., 0:9 rather
than 0-9) and don’t always include the square brackets. Others designate the
“anything else” input by simply not indicating an input (i.e., leaving it blank).
The important point here is to remember that the FSM diagram is intended
to be read by humans, so as long as the reader has been informed of the
conventions in use, he/she should be able to interpret the diagram correctly.

As we did for our first vending machine example, we will also show how
the SSN recognizer FSM can be implemented in software. The code is shown
in Figures 7.5 and 7.6. As in the earlier example, the current state of the FSM
is retained in the variable FSMstate, which can only have the values A through
K (as defined by either a set of #define statements or const int declarations
earlier). The boolean functions isNumber() and isDash() determine whether
or not the provided character matches the appropriate condition. The outputs
are implemented in the routines error() and accept(). Both the boolean

66

7.2. Polling and Interrupts

functions and output routines need to be provided elsewhere in the sketch
(e.g., the function isNumber() is available as the library routine isDigit()).

In the earlier example we made the point that the diagram was much
simpler to follow than the code. While that is certainly still the case, there
is an additional point to be made here. Note that the 11-state finite-state
machine diagram fit in substantially less than a page, while the code consumed
two full pages, and technically only includes the details for 6 of the 11 states.

7.2 Polling and Interrupts

In this section, we will talk about a pair of design patterns that are both
quite prevalent in microcontroller systems and overlap to some degree in what
they can accomplish. While they can be used for a variety of purposes, we
will focus on their use in reading and interpreting input signals that originate
external to the processor (mostly digital inputs).

7.2.1 Polling

Polling an input signal refers to the repeated, periodic reading of that signal.
Figure 7.7 illustrates a simple example of polling a digital input pin (adapted
from Figure 3.2), in which each loop() the digital input pin is read, the value
retained in diValue, and various actions happen depending upon the current
and previous digital input values.

One of the salient features of this design pattern is that the input is read
only once per iteration. Throughout the rest of the iteration, when the logic
depends upon the current input value it takes it from the variable diValue. In
this way, we are assured that the “logical” value of the input doesn’t change
part way through the iteration (e.g., the if test passes and then the print
statement shows the input as LOW).

This property is important if we are trying to perform logic as shown in
the sketch. At the end of each iteration, the current diValue is saved in
prevValue, so during the following iteration, prevValue retains the previous
value of the digital input. In this way, testing for the previous value being LOW

and the current value begin HIGH lets us reliably determine in which iteration
does the input transition from low to high.

In this example sketch, when the low-to-high input transition is detected,
the digital output is sent HIGH for 200 ms. Because we used a call to delay()

to implement the 200 ms wait, the length of time required for each iteration
varies. In many circumstances, polling an input with a variable period is
not a good choice (e.g., when we are reading an analog input value and we

67

http://www.arduino.cc/en/Reference/isDigit
http://www.arduino.cc/en/Reference/delay

7. Design Patterns

void loop () {

char inputSymbol = inputNextCharacter();

switch (FSMstate) { // code to implement FSM

case A:

if (isNumber(inputSymbol)) {

nextFSMstate = B;

}

else {

nextFSMstate = A;

error();

}

break;

case B:

if (isNumber(inputSymbol)) {

nextFSMstate = C;

}

else {

nextFSMstate = A;

error();

}

break;

case C:

...

case D:

if (isDash(inputSymbol)) {

nextFSMstate = E;

}

else {

nextFSMstate = A;

error();

}

break;

case E:

...

Figure 7.5: Source code for SSN finite-state machine. (Continued, next page.)

68

7.2. Polling and Interrupts

case G:

if (isDash(inputSymbol)) {

nextFSMstate = H;

}

else {

nextFSMstate = A;

error();

}

break;

case H:

...

case J:

if (isNumber(inputSymbol)) {

nextFSMstate = K;

}

else {

nextFSMstate = A;

error();

}

break;

case K:

if (isNumber(inputSymbol)) {

nextFSMstate = A;

accept();

}

else {

nextFSMstate = A;

error();

}

}

FSMstate = nextFSMstate;

}

Figure 7.6: Source code for SSN finite-state machine (cont.).

69

7. Design Patterns

const int diPin = 16; // digital input pin is 16

const int doPin = 17; // digital output pin is 17

int diValue = LOW; // digital input value

int prevValue = LOW; // previous input value

void setup() {

pinMode(diPin, INPUT); // set pin to digital input

pinMode(doPin, OUTPUT); // set pin to digital output

digitalWrite(doPin, LOW);

Serial.begin(9600);

}

void loop() {

diValue = digitalRead(diPin); // read the input

if (prevValue == LOW && diValue == HIGH) {

digitalWrite(doPin, HIGH);

delay(200);

digitalWrite(doPin, LOW);

}

Serial.print("input value = ");

Serial.println(diValue);

prevValue = diValue;

}

Figure 7.7: Polling example sketch.

want samples at regular time intervals). In these cases, we can use delta
timing techniques to both: (a) regularize the time period of each iteration,
and (b) implement the 200 ms pulse for the digital output signal.

Figure 7.8 illustrates the use of delta timing to accomplish the goals stated
above. In this sketch, five iterations happen each second (200 ms per itera-
tion), and the digital input is read precisely once per iteration. When the
output signal goes HIGH, due to the low-to-high transition on the input, it is
sent LOW one iteration later.

But what happens in the sketch of Figure 7.8 if the digital input signal
goes high for 100 ms and then goes back low? Since the digital input is being
polled every 200 ms, there is a significant chance that the high pulse that is
present on the input pin will be completely missed by the software.

70

7.2. Polling and Interrupts

const long deltaTime = 200; // loop period (in ms)

long loopEndTime = deltaTime;

long currentTime = 0;

const int diPin = 16; // digital input pin is 16

const int doPin = 17; // digital output pin is 17

int diValue = LOW; // digital input value

int prevValue = LOW; // previous input value

void setup() {

pinMode(diPin, INPUT); // set pin to digital input

pinMode(doPin, OUTPUT); // set pin to digital output

digitalWrite(doPin, LOW);

Serial.begin(9600);

}

void loop() {

currentTime = millis();

if (currentTime >= loopEndTime) { // one period is complete

loopEndTime += deltaTime;

diValue = digitalRead(diPin); // read the input

digitalWrite(doPin, LOW);

if (prevValue == LOW && diValue == HIGH) {

digitalWrite(doPin, HIGH);

}

Serial.print("input value = ");

Serial.println(diValue);

prevValue = diValue;

}

}

Figure 7.8: Polling sketch with regular period.

One solution to this issue is to poll the input at a higher rate. If we have
knowledge that the shortest pulse that will be present at the input is, say,
100 ms, a period shorter than this minimum pulse duration will always see
any low-to-high transition.

Another solution is to use a hardware feature present in microcontrollers
that allows us to alter the program flow of control under certain specified

71

7. Design Patterns

circumstances, including the change in value of a digital input pin. This
hardware feature is called an interrupt and will be our next subject.

7.2.2 Interrupts

An interrupt is a change in program control flow based upon an explicit trigger
event. Interrupts can be triggered by a wide variety of things, including both
internal events (e.g., a timer) and external events (e.g., a digital input pin).
Here, we will consider using interrupts to detect the low-to-high transition on
an input pin.

There are a number of things that must be present to accomplish this.

1. A trigger must be unambiguously specified for the interrupt to occur
(e.g., a level change on a particular digital input pin).

2. A routine must be authored that is the target of the control flow change
(i.e., the code that gets called when the trigger occurs). This routine is
commonly called an interrupt service routine (ISR), since it “services”
the interrupt when it occurs.

3. Because the ISR cannot have parameters or a return value, mechanisms
must be put in place for interaction between the main sketch and the
ISR. This is typically accomplished through the use of global variables.

4. Care must be taken when accessing these global variables, because in-
terrupt triggers can happen at any time.

We specify an interrupt trigger using the attachInterrupt() library rou-
tine. The parameters are an interrupt number (provided by a call to the
library function digitalPinToInterrupt()), the name of the ISR, and one
of the modes listed in Table 7.1.

Table 7.1: Interrupt trigger modes.

Mode Meaning

LOW trigger interrupt whenever pin is low
CHANGE trigger interrupt whenever pin changes value
RISING trigger interrupt whenever pin goes from low to high
FALLING trigger interrupt whenever pin goes from high to low

When authoring the interrupt service routine, there are a number of lim-
itations that must be followed. As already stated, the ISR cannot have pa-
rameters and does not return a function value. In addition, a number of the

72

http://www.arduino.cc/en/Reference/attachInterrupt
http://www.arduino.cc/en/Reference/digitalPinToInterrupt

7.2. Polling and Interrupts

timing library routines will not operate as you otherwise might expect within
an ISR, because they use interrupts themselves. This includes delay() and
millis(). Finally, since only one ISR can run at a time, and interrupts can
be triggered at any time, an ISR should be as short as possible.

When declaring global variables to use with an ISR, include the volatile

keyword. When accessing (reading or writing) those global variables, make
sure that interrupts are turned off (using noInterrupts() and interrupts()).
The code that is executed while interrupts are off is called a critical section,
implying that it is critical that an interrupt not occur during the execution
of this code. As with an ISR, a critical section should also be as short as
possible.

If the trigger for an interrupt occurs while the interrupts are turned off
(i.e., while the sketch is in a critical section), the interrupt is pending and will
trigger once interrupts have been turned back on.

Figure 7.9 illustrates a sketch that uses interrupts to detect when a digital
input pin goes from low to high. The ISR is called catchRisingEdge and
is shown at the bottom of the sketch. Note that it is very short, taking as
little time to execute as is reasonable. The interrupt trigger is on the rising
edge of diPin, as specified in the invocation of attachInterrupts(). Note
that only a limited number of pins support interrupts. The variable flag is
used to communicate between the ISR and the main loop() and it is declared
volatile. When flag is accessed in loop() it is in a critical section (which
is also very short).

Because catchRisingEdge() gets invoked by the microcontroller’s hard-
ware interrupt mechanisms, it can happen any time that interrupts are on
(the sketch is not in a critical section). This means that even a very short
pulse on the digital input pin will cause the interrupt to trigger, the ISR to
be called, flag to be set true, and the rising edge not to be missed.

7.2.3 Discussion

While the descriptions of both polling and interrupts used the example of
reading a digital input pin, both design patterns are frequently used for other
tasks as well (e.g., regular timing for digital outputs, analog inputs and out-
puts, etc.). As a general rule, polling is a simpler approach and is therefore
less prone to errors in implementation, while interrupts can accomplish some
things a time scales that are not readily accessible to polling.

73

http://www.arduino.cc/en/Reference/delay
http://www.arduino.cc/en/Reference/millis
http://www.arduino.cc/en/Reference/noInterrupts
http://www.arduino.cc/en/Reference/interrupts
http://www.arduino.cc/en/Reference/attachInterrupts

7. Design Patterns

const long deltaTime = 200; // loop period (in ms)

long loopEndTime = deltaTime;

long currentTime = 0;

const int diPin = 2; // pin 2 supports interrupts

const int doPin = 17; // digital output pin is 17

volatile boolean flag = false; // input rising flag

void setup() {

pinMode(diPin, INPUT); // set pin to digital input

pinMode(doPin, OUTPUT); // set pin to digital output

digitalWrite(doPin, LOW);

attachInterrupt(digitalPinToInterrupt(diPin),

catchRisingEdge, RISING);

}

void loop() {

currentTime = millis();

if (currentTime >= loopEndTime) { // one period is complete

loopEndTime += deltaTime;

digitalWrite(doPin, LOW);

noInterrupts(); // enter critical section

if (flag) {

digitalWrite(doPin, HIGH);

flag = false;

}

interrupts(); // exit critical section

}

}

void catchRisingEdge() {

flag = true;

}

Figure 7.9: Reading input using interrupts.

74

7.3. Event-driven Programming

7.3 Event-driven Programming

The last design pattern than we will discuss in this chapter is event-driven pro-
gramming . In an event-driven program, the organization is centered around
events that the program responds to as they happen, as opposed to the pro-
gram itself controlling the sequence and/or timing of when things happen.

Events can be almost anything that the program is designed to react to.
Examples include user actions (keypress or mouse click), elapsed time, external
inputs (digital input, receipt of information on a communications link), etc.
The event detection can be implemented using polling (Figure 7.7 can be
considered an example of an event-driven program where the event is the
digital input going from low to high) or using interrupts. The code that gets
executed when the event happens is frequently called an event handler .

We’ve already seen several examples of event-driven programming. In
Chapter 6, the delta time approach to timing is a case where elapsed time can
be considered to be an event. Figure 7.10, which is the same as Figure 6.7,
just repeated here, illustrates two different time periods, where the code within
the if conditional for each delta time test will each be executed when their
respective timer has elapsed (either every 200 ms or 500 ms, respectively).

Both of the example sketches that implement finite-state machines above
are also illustrations of the design pattern. In Figure 7.2, the routine that
accepts a new coin, inputNextCoin(), implements the receipt of a coin which
the rest of the sketch treats as an event, and the receipt of a character is
treated as an event in Figure 7.5.

The use of the event-driven programming design pattern provides some
very explicit benefits; however, it also entails some additional responsibilities
on the part of the programmer. We will discuss each in turn.

7.3.1 Benefits of Event-driven Programming

The primary benefit of event-driven programming techniques is that they allow
the executing program to react to when events happen, and in what order
events happen, in a natural way. In the FSM examples in Section 7.1 above,
the logic of the sketch did not need to be altered to account for when the input
symbols arrived. Instead, the receipt of an input symbol is an event, and the
processing of that event happens whenever it is received.

In the delta time example of Figure 7.10, in which there are two different
timers that are being used, the sketch does not need to be concerned about
which timer will expire next. The reaction to each event (in this case, timers
expiring) is implemented separately from one another.

75

7. Design Patterns

const long deltaTimeA = 200; // loop period A (in ms)

const long deltaTimeB = 500; // loop period B (in ms)

long loopEndTimeA = deltaTimeA;

long loopEndTimeB = deltaTimeB;

long currentTime = 0;

void setup() {

}

void loop() {

currentTime = millis();

if (currentTime >= loopEndTimeA) { // period A is complete

loopEndTimeA += deltaTimeA;

// code to be executed once per 200 ms

}

if (currentTime >= loopEndTimeB) { // period B is complete

loopEndTimeB += deltaTimeB;

// code to be executed once per 500 ms

}

}

Figure 7.10: Two timing loops using delta time techniques.

A subtle benefit that follows from the property that event-driven designs
react to events whenever they happen is that the sketch can do other things
while waiting for time to elapse. Therefore, if a sketch decides that something
is to happen in the future, rather than just inserting a delay() call, the
programmer can invoke delta timing techniques and proceed to do other things
while waiting for the desired time to elapse.

Practice Problem Outline how one would author a sketch that combines
both a delta time based timer and an FSM in the same application. You may
assume that there are routines available that will test whether or not an input
symbol has arrived as well as receive the next input symbol.

76

http://www.arduino.cc/en/Reference/delay

7.3. Event-driven Programming

Solution The sketch below gives the basic structure.

loop{} {

currentTime = millis();

if (currentTime >= endTime) { // time period is complete

endTime += deltaTime;

// event handler for timer-based event

}

if (symbolPresent()) { // true if FSM input symbol available

inputSymbol = inputNextSymbol();

// event handler that implements FSM

}

}

Notice that the delta time event handler and the FSM event handler will exe-
cute in whatever order is dictated by time moving forward and input symbols
being received.

7.3.2 Challenges with Event-driven Programming

While the benefits of event-driven programming design are substantial, they
are not without challenges as well. Frankly, one of the greatest benefits, that
event handlers can be invoked in any order based on the receipt of the events
themselves, is also a challenge. The code that goes into an event handler
cannot depend on event handlers being triggered in any specific order.

Take, for example, the sketch of Figure 7.10, which has an event handler for
the 200 ms period events and a separate event handler for the 500 ms period
events. Even though the 200 ms event handler is the first one in loop(),
one cannot assume that it is executed first. If loopEndTimeA is larger than
loopEndTimeB, the 500 ms event handler will be the first one to execute.

What that means for the programmer is that whenever one is reasoning
about the logic of the sketch to ensure everything will work correctly, one has
to consider all possible orderings of the event handlers. Of course, the easiest
circumstances to do this under are when the event handlers are independent of
one another. If they are not independent, make sure to consider all orderings
when reasoning about your code.

Another challenge associated with event handlers is that issues can arise
whenever too much time is spent in them. If other events happen during the

77

7. Design Patterns

time that the event handler code is executing, the invocation of the event
handlers for those events is delayed.

This can be especially egregious when the programmer inserts a delay()

call into an event handler. The delay() routine does not return program
control until the specified time has elapsed, which means that nothing else
can happen in the code of the sketch until that delay() completes.

If you are tempted to author code in an event handler that is going to
take some significant amount of elapsed time, it is appropriate to reconsider
the way in which the code is organized. For example, take advantage of the
ability to simply schedule some other event later in time. To do this, do the
following three things: (1) save the pertinent information for your program
logic to continue (e.g., if you are iterating through a list of items, save which
item you are currently processing); (2) set a time-based event for the later
time using delta time techniques; and (3) continue the logic of the program in
the delta time event handler.

Figure 7.11 illustrates this transformation. The first sketch, Figure 7.11(a)
is organized around a for loop, with a call to delay() between each index
i’s processing. What that implies is that contained within a single entry into
loop(), the sketch will process the entire list or array (all N entries), and
nothing else will get the microprocessor’s attention. No reading analog or
digital inputs, no changing of analog or digital outputs, not receipt of input
symbols for a finite-state machine, nothing else will get done.

Now compare that with the event-based design of the second sketch, Fig-
ure 7.11(b). Here, the pertinent information required for the sketch to remem-
ber where it is has been declared as the index variable i, which is initialized
to 0 at compile time. The processing of each index is now in the event handler
triggered by the delta time if test. Within that event handler, the list or
array element i is processed, the index variable is updated (i.e., i++), and the
next time for the event to trigger is set.

Consider how this event-based sketch operates. First, and most impor-
tantly, during the time that a list or array item is not being processed, the
microcontroller is free to do other things. Additional event handlers can be
added to loop(), and they can trigger between the execution of two different
values of the index i. Second, the use of delta timing techniques gives more
confidence that the actual execution of the items in the list or array is hap-
pening every 0.5 s (rather than 0.5 s plus whatever time is spent by the item
processing and for loop overheads). This latter benefit accrues simply from
the use of delta timing techniques, which are inherently event-driven.

78

http://www.arduino.cc/en/Reference/delay
http://www.arduino.cc/en/Reference/delay
http://www.arduino.cc/en/Reference/delay
http://www.arduino.cc/en/Reference/delay

7.3. Event-driven Programming

const long deltaTime = 500; // period (in ms)

void setup() {

}

void loop() {

for (int i=0; i<N; i++) {

// process item i in a list or array

delay(deltaTime);

}

}

(a) Loop-based sketch.

const long deltaTime = 500; // period (in ms)

long endTime = 0;

long currentTime = 0;

int i=0; // index into list or array

void setup() {

}

void loop() {

currentTime = millis();

if (currentTime >= endTime && i < N) { // time is elapsed

// process item i in a list or array

i++;

endTime += deltaTime;

}

}

(b) Event-based sketch.

Figure 7.11: Transforming loop-based sketch (a) into event-based sketch (b).

79

7. Design Patterns

Practice Problem Although the loop-based and event-based sketches of
Figure 7.11 are discussed as if they perform the same processing on each
index, that is actually not the case. We intentionally left out an important
fact that distinguishes the resulting operation of the two sketches. What is
that fact?

Solution The fact that distinguishes the two sketches is that they do not
operate in the same way after the processing of all N items in the list or array.
The loop-based sketch processes all N items in one invocation of loop(), then
re-enters loop() and starts processing all of the items again. The event-based
sketch processes all N items over multiple invocations of loop(), and once i is
equal to N, the event no longer triggers due to the i < N conditional as part
of the if test that triggers the event.

If one wanted to convert the event-based sketch to act the same as the
loop-based sketch, one simple way to do that would be to change the update
to i in the event handler from i++ to i = (i + 1) % N.

80

8 Information Representation

This chapter will deal with how information is represented within a computer.
We will start with numbers, followed by characters and strings, and finish up
with how we represent images.

8.1 Numbers

Numbers come in lots of forms. We can talk about the counting numbers,
integers, reals, or complex numbers. Algebra allows us to represent relation-
ships between numbers, and reason about those relationships. Here, we are
interested in the approaches used to represent numbers with a computer. This
includes how to store numbers as well as manipulate them mathematically.

8.1.1 Brief History of Number Systems

We will start with a brief history of number systems. Did you ever wonder
how the Romans wrote down the number zero? Think about it, I is one, II is
two, III is three, IV is four, etc. But how did they write down zero?

In what follows, we will constrain ourselves to using standard positional
notation (i.e., the numerical value of a symbol depends upon its position).

Counting Numbers

One of the earliest uses of written numbers is to count things. This is known
to have occurred by the late fourth millennium B.C. in Mesopotamia, present
day Iraq [8], although it might have happened even earlier than that.

In the decimal system that we humans typically use these days1, the first
several counting numbers are:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

1This was not always the case, the Babylonians used base 60, which is how we ended up
with 60 seconds in a minute and 60 minutes in an hour.

81

8. Information Representation

which starts at 1 but continues infinitely far to the right.

The counting numbers are good at measuring how much stuff I have. For
example, with just the counting numbers I can compare with my neighbor,
and say, “I have 7 cows and 2 goats. How many do you have?” And my
neighbor can reply in a meaningful way.

Getting just a bit more formal, we say that the counting numbers are
closed under addition and multiplication. What this means is that if we know
that a is a some counting number and we know that b is also some counting
number, without knowing the particular values of a or b we do know that
a + b is a counting number and a × b is a counting number. To say that a
number system (such as the counting numbers) is closed over some operation
is to say that performing the operation on numbers within the system results
in a number that is also within the number system. In other words, adding
a pair of counting numbers cannot give you a negative number or a fraction,
the result will always be another counting number.

Zero: Natural Numbers

If I’ve just told my neighbor that I have 7 cows and 2 goats, and I’ve also
politely inquired about how many he has, how does he respond if he has no
cows? He can certainly say something like, ”I do not have any cows. However,
I do have 4 goats.” This reply, of course, answers the question, but doesn’t
help us reason about “no” cows in an algebraic system.

Brahmagupta, an Indian mathematician, addressed the above issue by
describing the rules governing the use of the number 0, or zero, in A.D. 628 [2].
By incorporating 0 into our number system, we now have the natural numbers,
which include all the counting numbers and zero as well. This number system
is also known as the whole numbers. Like the counting numbers, the natural
numbers are closed under addition and multiplication.

Returning to our question earlier, how did the Romans write down zero?
They didn’t, literally, as a number. Instead, they used the word nulla mean-
ing “nothing.” They might write Ego non habent ullam vaccas, which when
translated from Latin means, “I do not have any cows.”

Negative Numbers: Integers

If I can count things, you can guess that commerce isn’t far behind. In ex-
change for some thing I value, I might give my neighbor 3 chickens. I can
reason about this just fine if I have 3 or more chickens to give, but what
about when I promise my neighbor 3 chickens but the chicks haven’t hatched

82

8.1. Numbers

yet (i.e., I don’t have 3 chickens to give)? I can, of course, say, “I owe you
3 chickens.” Here, I am using words that are outside the number system
to differentiate two distinct meanings for the phrase “3 chickens.” “I own
3 chickens” means something very different than “I owe 3 chickens.”

However, maybe there is a better way. Let’s introduce the concept of
negative numbers, which gives us the number system called the integers. With
negative numbers, rather than using different words to talk about 3 chickens,
I can use one number system to represent both concepts. “I owe 3 chickens”
gets transformed into “I own −3 chickens.”

Getting back to formalism, the integers are closed under addition, multi-
plication, and subtraction. Clearly, the notion of giving my neighbor some of
my chickens (either present or future chickens) can be represented using sub-
traction. Another way we make formal statements about number systems is
to describe forms of algebraic equations that can be solved within the number
system. For example, if a is a constant integer, we can solve equations of the
form

x+ a = 0 (8.1)

and know that the value of x that solves the equation will be an integer.

A quick note on the names of different numbers. With the advent of neg-
ative numbers, the numbers that are not negative came to be called positive2

Humanity has started down a path in which many number systems are named
as opposites. That is, the name of the number system borrows opposite labels
from the natural language words used to name them.

Rational Numbers

As you can well imagine, the development of number systems was strongly
driven by the needs of commerce. People need to know how much of this or
that they own, buy, sell, or trade. They also die, and their children inherit.

If I lived in antiquity and owned 2 pigs, when I died tradition held that my
2 pigs were divided among my 3 sons. (Sorry gals, enlightened thinking about
equality of the sexes came much later than the notion of rational numbers.)
Each of my sons now owns 2/3 of a pig, and we have expanded our number
system to explicitly include ratios between integers. This defines the rational
numbers. Note that the label “rational” comes from the root “ratio,” not the
other English meanings associated with the word rational, such as reasonable
or logical.

2Although it is the matter of some debate whether or not 0 is included in the positive
numbers, we’ll ignore this bit of minutia.

83

8. Information Representation

More formally, rational numbers are closed under addition, multiplication,
subtraction, and division. If a and b are constant rational numbers, we can
solve equations of the form

ax+ b = 0 (8.2)

as long as a 6= 0.

Irrational Numbers: Reals

Once folks figured out the rational numbers, they thought they had it all down.
Other than this weird issue of not being able to divide by zero, they could do
pretty much everything they thought they wanted to. Addition, subtraction,
multiplication, and division were all available to them, and the number system
handled it all.

Except....

Figure 8.1 was puzzling. Given a right triangle (the angle at the bottom
left is precisely 90◦), with adjacent edges each of length 1, how long is the
opposite edge, or the hypotenuse? If a is the length of the bottom edge (a = 1
in this case), b is the length of the left-most edge (b = 1 in this case), and x
is the unknown length of the hypotenuse, the Pythagorean theorem tells us

a2 + b2 = x2 (8.3)

and if we substitute the known values for a and b (and do a little algebraic
manipulation), we get

x2 − 2 = 0 (8.4)

for which there are two solutions: x =
√

2 and x = −
√

2.

Figure 8.1: Right triangle. How long is the hypotenuse (the edge opposite the
right angle)?

The problem is that for centuries mathematicians couldn’t find rational
solutions to Equation (8.4), because neither solution can be expressed as a
ratio of two integers. In other words, the rational numbers are not closed
under the square root operation.

84

8.1. Numbers

The real numbers expand the number system beyond the rational numbers
to include values that cannot be expressed as a ratio of two integers. Examples
include

√
2 (illustrated above), π (the ratio of the circumference of a circle to

its diameter), and e (the base of the natural logarithms).
Real numbers that are not rational numbers are called irrational numbers.

You might notice the pattern mentioned above continuing. In the naming of
number systems, numbers that are not rational are called irrational. However,
remember that rational came from ratio, not the other possible meanings of
rational in English (e.g., logical, reasonable). As a result, irrational means
“cannot be expressed as a ratio,” not “illogical” or “unreasonable.”

Complex Numbers

While they can do quite a bit, real numbers aren’t yet the be all and end all
of number systems. Consider the following equation:

x2 + 2 = 0 (8.5)

There does not exist a real number that will solve it. Instead, we will introduce
complex numbers.

Consider a vector number system with 2 components: (a,b) where a and
b are both real numbers. Our new vector number system obeys the following
rules.

1. Equality: (a, b) = (c, d) iff3 a = c and b = d.

2. Addition: (a, b) + (c, d) = (a+ c, b+ d).

3. Multiplication: (a, b)× (c, d) = (ac− bd, ad+ bc).

Note: numbers in this number system with the second components equal to 0
have the same properties as real numbers:

1. (a, 0) = (c, 0) iff a = c.

2. (a, 0) + (c, 0) = (a+ c, 0).

3. (a, 0)× (c, 0) = (ac, 0).

Continuing the naming pattern established earlier, if the first component of
the vector number system is called real, it was only a matter of time before
the second component came to be called imaginary . This name is somewhat

3The notation iff is shorthand for if and only if.

85

8. Information Representation

unfortunate, however, as many people then associate the English definition
of imaginary (i.e., made up, fake) with the second component of the vector
number system, and no such association is warranted. The use of the label
“imaginary” is nothing other than a historical accident.

We now return to Equation (8.5). First we rewrite it as an equation in
complex numbers (our two component vector number system).

x2 + (2, 0) = (0, 0) (8.6)

Second, we assign x = (0,
√

2).

x2 + (2, 0) = (0,
√

2)2 + (2, 0)

= (0,
√

2)× (0,
√

2) + (2, 0)

= (−2, 0) + (2, 0)

= (0, 0) X

This shows that x = (0,
√

2) is a solution to Equation (8.5).

Another interesting equation is shown below.

x2 + 1 = 0 (8.7)

A little bit of algebraic manipulation yields the following,

x2 + 1 = 0

x2 = −1

x =
√
−1

which is a number that has intrigued folks for years. Let’s now try out Equa-
tion (8.7) with x = (0, 1):

x2 + (1, 0) = (0, 1)2 + (1, 0)

= (0, 1)× (0, 1) + (1, 0)

= (−1, 0) + (1, 0)

= (0, 0) X

which tells us that x = (0, 1) =
√
−1.

So far we have presented the complex numbers as a two component vector
number system. A far more common notation for complex numbers defines
the symbol i =

√
−1. With this definition of i, then any complex number

86

8.1. Numbers

written in the form (a, b) can be rewritten as a+ ib, which can be understood
by the following line of reasoning.

a+ ib = (a, 0) + (0, 1)× (b, 0)

= (a, 0) + (0, b)

= (a, b)

This gives us the traditional form of writing complex numbers.
So, formally, how powerful are complex numbers. It turns out that com-

plex number are rich enough as a number system to solve arbitrary constant
coefficient polynomial equations of the form:

a0x
n + a1x

n−1 + ...+ an−1x+ an = 0 (8.8)

If the a’s are complex-valued, n ≥ 1, and a0 6= 0, there are precisely n roots to
the equation [4]. This result is known as the Fundamental Theorem of Algebra,
and you know they don’t give a theorem that important a name unless it’s
pretty important stuff.

8.1.2 Positional Number Systems

It is traditional in the modern world to write numbers using a positional
system, in which the value of a numerical digit (or digit symbol) depends
upon its position within the number as a whole. This is true not only for
the decimal system that we most commonly use as humans, but also for the
binary system that gets used within digital computers.

Decimal

In the decimal system, which is base 10, the weight associated with each
position is a power of 10. If we have a 3-digit number denoted as uvw10, where
u is the 1st digit, v is the 2nd digit, w is the 3rd digit (i.e., 0 ≤ u, v, w ≤ 9),
and the the subscript 10 indicates the number is written in decimal notation,
then the overall value is represented by

uvw10 = u · 102 + v · 101 + w · 100

= u · 100 + v · 10 + w.

Positional notation extends to the right side of the decimal point as well.
If we have the 6-digit number uvw.xyz10, again each letter is one decimal digit
(i.e., 0 ≤ u, v, w, x, y, z ≤ 9), the the overall value is represented by

uvw.xyz10 = u · 102 + v · 101 + w · 100 + x · 10−1 + y · 10−2 + z · 10−3

= u · 100 + v · 10 + w + x · 0.1 + y · 0.01 + z · 0.001.

87

8. Information Representation

Binary

The rules for positional numbers in the binary system are the same as for
the decimal system, with only two differences. Instead of digits having values
between 0 and 9, in the binary system digits can only have two values, 0 or 1;
and the weight associated with each position is a power of 2.

In binary, if we have a 3-digit number denoted as uvw2, where u is the 1st
digit, v is the 2nd digit, w is the 3rd digit (0 ≤ u, v, w ≤ 1), and the subscript
2 indicates the number is written in binary notation, the overall value is

uvw2 = u · 22 + v · 21 + w · 20

= u · 4 + v · 2 + w.

Note, the above expression uses decimal notation, a practice we will continue
unless explicitly noted otherwise.

For example if the binary number is 1002, u = 1 (the first digit), v = 0
(the second digit), and w = 0 (the third digit). The decimal value is therefore:

1002 = (1 · 4) + (0 · 2) + 0

= 4 + 0 + 0

= 410

Similarly, the decimal value of 1012 is 5, the decimal value of 0102 is 2, and
the decimal value of 0002 is 0.

Binary numbers need not be limited to 3 digits. As the number of digits
increases (to the left), the weight of each digit increases by a factor of 2. I.e.,
to the left of 4 is 8, then 16, 32, etc. As a result, the decimal value of the
binary number 100012 is 16 + 1 = 17.

Fractional numbers work as well in binary as in decimal. If we have the
6-digit number uvw.xyz2, again each letter is one binary digit (called a bit),
the overall value is

uvw.xyz2 = u · 22 + v · 21 + w · 20 + x · 2−1 + y · 2−2 + z · 2−3

= u · 4 + v · 2 + w + x · 12 + y · 14 + z · 18 .

We normally call the “.” that separates the integer portion of the number
from the fractional portion of the number the decimal point ; however, we are
no longer using the decimal number system, so that terminology is technically
incorrect. The generalized word for the “.” symbol is the radix point , which
is a term that is appropriate to use whatever base we are using (the radix is
simply another word for the base of a number system).

88

8.1. Numbers

Let’s look at a couple more examples, this time for binary numbers that
are not limited to integers. If the binary number is 011.1002, then u = 0,
v = 1, w = 1, x = 1, y = 0, and z = 0. The decimal value is therefore:

011.1002 = (0 · 4) + (1 · 2) + 1 + (1 · 12) + (0 · 14) + (0 · 18)

= 0 + 2 + 1 + 0.5 + 0 + 0

= 3.510

In the same way, the decimal value of 111.001 is 7.125. As before, the fraction
need not be limited to 3 digits. Moving to the right, the weight of the next
digit is 1/16, then 1/32, etc.

While numerical input to a computer and output from a computer might
be provided by the user and presented to the user in decimal representation,
rest assured that the internal computations are all being performed in binary.
Techniques for converting numbers between bases are provided in Appendix C.

Hexadecimal

While numerical representation within the computer is all in binary, this rep-
resentation is quite cumbersome for humans. It is very difficult for us visually
to distinguish between, e.g., 01101110 and 01100110, and as a result, when-
ever humans are required to deal directly with binary representation, it is a
very error-prone endeavor.

Fortunately, there are options that can help us deal with this issue, in
a way that make working with binary values dramatically more convenient.
The option that is most frequently used is to convert the binary values that
we wish to reason about into hexadecimal notation, i.e., base 16. Note, it is
common practice to shorten the label hexadecimal to just hex (which we will
frequently do as well). That does not change the fact that the base is 16, not
6!

First, let’s examine hexadecimal (or hex) notation itself, and then we’ll
consider why it is so helpful in terms of humans reasoning about binary. As in
all positional systems, the value of a digit depends upon its position. In this
case, the base is 16, so the weight associated with each position is a power of
16. In hexadecimal notation, each digit can have values ranging from 0 to 15,
and it is conventional to use the first six letters of the alphabet to represent
the values 10 through 15 when denoting numbers in hex. So, don’t think of
the letters a through f as variables in algebraic notation, but instead think of

89

8. Information Representation

them as numerical digits4. Table 8.1 gives the value (in decimal) of each of
the digits we will use in hexadecimal notation.

Table 8.1: Value (in decimal) of hexadecimal digits.

Hex digit 0 1 2 3 4 5 6 7 8 9 a b c d e f

Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Using these digits, if we have a 3-digit number denoted as uvw16, where u
is the 1st digit, v is the 2nd digit, w is the 3rd digit (0 ≤ u, v, w ≤ 15), and
the subscript 16 indicates the number is written in hex notation, the overall
value is

uvw16 = u · 162 + v · 161 + w · 160

= u · 256 + v · 16 + w.

For example, if the hexadecimal number is 13a16, the decimal value is

13b16 = (1 · 256) + (3 · 16) + 11

= 256 + 48 + 11

= 315.

Fractional numbers work as well in hex as in binary or decimal. If we have
the 6-digit number uvw.xyz16, again each letter is one hex digit, the overall
value is

uvw.xyz16 = u · 162 + v · 161 + w · 160 + x · 16−1 + y · 16−2 + z · 16−3

= u · 256 + v · 16 + w + x · 1
16 + y · 1

256 + z · 1
4096 .

For example, the hex number 1f.416 has the decimal value

1f.4 = (1 · 16) + 15 + (4 · 1
16)

= 16 + 15 + 0.25

= 31.25.

There are two very strong reasons why we use hex extensively instead of
binary. First, hex is visually much closer to the familiar decimal representa-
tion, so we make fewer human errors when reading and the number of digits
is closer to what our brains expect to see and understand. Second, it is very

4We will use a through f (lower case), but it is also common to use A through F (capitals)
to represent the values 10 through 15.

90

8.1. Numbers

straightforward to convert back and forth between binary and hex represen-
tations. As a result, it is quite common to use hex as a shorthand for binary,
to simplify our ability to copy, compare, etc., numbers, but recall that in-
side the machine it really is binary all the time. Hex is nothing more than a
convenience for us as humans.

To convert from hex to binary, we start at the radix point and translate
each hex digit into 4 binary digits, moving both to the left and right of the
radix point. This gives

1fc7.2d416 =

0001 1111 1100 0111.0010 1101 01002

where space has been added between groups of 4 binary digits to help see the
correspondence between each hex digit and each group of 4 binary digits. It
is traditional to assume the radix point is to the far right of a number if it is
not explicitly shown (i.e., the number is a whole number). A second example
is

86eb0116 =

1000 0110 1110 1011 0000 00012

Converting from binary to hex simply reverses the process. Group the
binary digits into groups of 4, starting from the radix point and moving out
to the left and the right. If the number of binary digits on either side of the
radix point is not an even multiple of 4, pad the binary number with zeros
until it is an even multiple of 4. Then convert each group of 4 binary digits
into the equivalent hex digit.

Both Java and C support the specification of hexadecimal constants by
prepending the number with the symbols 0x, so that the number 1f316 would
be written 0x1f3. We will use this notation going forward to indicate that a
number is understood to be in hexadecimal form.

8.1.3 Supporting Negative Numbers

When writing numbers down on a page, there is a straightforward notation
that we are all used to when we wish to denote that a number is negative, the
“−” symbol, or the minus sign. This technique doesn’t work, however, within
digital systems that can only use 0 and 1 as symbols. In the sections below, we
describe a number of techniques that are currently used in computer systems
for representing negative numbers.

91

8. Information Representation

Table 8.2: Sign-magnitude integers.

Binary Decimal
number value

00 +0
10 −0
01 +1
11 −1

0101 +5
1101 −5

01000000 +64
11000000 −64

Sign-Magnitude

The first technique for representing negative numbers within a computer draws
its origins straight from the written notation that we are all familiar with.
The first digit (or bit) of a number is simply designated as a sign bit, and the
bits that follow represent the value (magnitude) of the number. The normal
convention is to have 1 represent a negative number and 0 represent a positive
number (this is because positive numbers then are interpreted the same way
as regular unsigned binary values).

Table 8.2 shows the value (in decimal) for several integers represented
in what is called sign-magnitude form. The first two entries illustrate the
biggest issue with the sign-magnitude representation, there are two ways to
designate 0, since +0 and −0 are really the same thing. With two different
representations, however, the circuitry and other logic necessary to manipulate
numbers (e.g., check for equality) become more complicated.

When a fixed number of bits are used to store a sign-magnitude number,
we can easily discern the range of values that are supported. With n bits in
the number, the range of possible values that can be represented is −(2n−1−1)
to +(2n−1 − 1).

Excess or Offset

The second technique is called either excess notation or offset notation. In this
approach, a fixed amount (that must be agreed to ahead of time) is logically
subtracted from each number. For example, if the regular binary value of a
number was 3, and the offset was specified as 7, the value of the number is
3− 7 = −4.

92

8.1. Numbers

Table 8.3: 4-bit numbers and their value in several number systems.

4-bit Binary Sign-magnitude Excess-7 Two’s complement
number value value value value

0000 0 0 −7 0
0001 1 1 −6 1
0010 2 2 −5 2
0011 3 3 −4 3
0100 4 4 −3 4
0101 5 5 −2 5
0110 6 6 −1 6
0111 7 7 0 7
1000 8 −0 1 −8
1001 9 −1 2 −7
1010 10 −2 3 −6
1011 11 −3 4 −5
1100 12 −4 5 −4
1101 13 −5 6 −3
1110 14 −6 7 −2
1111 15 −7 8 −1

When a fixed number of bits are used to store a number in excess notation,
the offset amount is typically chosen to be near the midpoint of the range of
representable values. For example, Table 8.3 shows both the unsigned (binary)
values and the excess notation values for a 4-bit excess number system with
an offset of 7 (along with sign-magnitude and two’s complement values).

While this notation has the nice property that value comparisons work the
same way as regular binary notation (if a < b using normal binary conventions,
a < b in excess notation as well); however, arithmetic manipulation (addition,
subtraction) is substantially complicated.

Radix Complement

While the sign-magnitude and excess notation do get used in computer systems
(see the description of floating-point numbers below), by far the most common
approach to representing negative numbers in computers is known as two’s
complement notation, or more generally radix complement notation (with two
as the binary radix).

Two’s complement notation is constrained to number systems with a fixed
number of bits. Like regular binary numbers, the two’s complement number

93

8. Information Representation

system is a positional system, with weights associated with each position.
What is unique about two’s complement numbers is that the left-most digit
(the first bit of the number) has a weight that is negative.

In two’s complement, if we have a 4-digit number denoted as uvwx, where
u is the first digit, v is the second digit, w is the third digit, and x is the
fourth digit, the value is

uvwx = u · −8 + v · 4 + w · 2 + x

where the weight associated with the first digit has the same magnitude that
it would have in regular unsigned binary notation, but its weight is negative.

For example, if the two’s complement number is 0100, the decimal value
is

0100 = (0 · −8) + (1 · 4) + (0 · 2) + 0

= 0 + 4 + 0 + 0

= 4

which is the same as in regular binary. As a second example, if the two’s
complement number is 1101, the decimal value is

1101 = (1 · −8) + (1 · 4) + (0 · 2) + 1

= −8 + 4 + 0 + 1

= −3

which is negative.

The two’s complement number system has several properties that make it
attractive for use in computer systems:

1. The least significant n−1 bits (of an n-bit number) have the same mean-
ing in two’s complement notation as in the standard binary positional
notation.

2. The weight of the most significant bit is negated; however, it retains the
same magnitude as its weight in the standard binary positional notation.

3. There is only one zero (and every bit of zero is 0).

4. All negative numbers have a 1 in the first bit, and all non-negative
number (0 and positive numbers) have a 0 in the first bit. As a result,
this bit is commonly called the sign bit .

94

8.1. Numbers

5. Arithmetic circuits that perform addition work equally well for standard
binary notation and two’s complement notation.

For an n-bit two’s complement number system, the range of values that can
be represented is −(2n−1) to +(2n−1 − 1). Virtually all integer numbers in
computers are represented using two’s complement representation.

8.1.4 Integer Data Types in Programming Languages

When numbers are represented inside a digital computer, they are stored in
fixed-size memory locations and manipulated using arithmetic circuits that
support a fixed number of bit positions. As indicated by the above discussion,
the range of integer values that can be represented in a fixed number of bits
depends on the number of bits. Assuming a two’s complement representation,
the range of integer values that can be represented in n bits is between −2n−1

and 2n−1−1. By convention, the least significant bit is designated as bit 0 and
the most significant bit is designated as bit n− 1, such that a 16-bit number
with binary digits bi would be as follows.

b15b14b13b12b11b10b9b8b7b6b5b4b3b2b1b0

The number of bits supported by a digital computer often depends both
on the architecture of the computer and the language used to express the
program. The virtually all cases, however, the number of bits is some even
number of bytes or groups of 8 bits. In Java, variables declared as type int

hold 32-bit (4-byte) two’s complement numbers. In addition to the int data
type, Java supports the short data type, which holds a 16-bit (2-byte) two’s
complement number, as well as the byte data type, which holds an 8-bit
(1-byte) two’s complement number.

In C, the size of variables declared as type int depends upon the architec-
ture and compiler. For the AVR microcontroller and gcc compiler, a C int

holds a 16-bit (2-byte) two’s complement number. In addition to integers,
C also supports data types that hold natural numbers (non-negative num-
bers). An unsigned int is of the same size as an int (2 bytes on the AVR
microcontroller using gcc); however, it holds values ranging from 0 to 216−1.

We frequently use the term “signed” to refer to integer data types that use
two’s complement to represent negative numbers and the term “unsigned” to
refer to data types that only support non-negative integers.

95

8. Information Representation

8.1.5 Fractional Numbers

How positional number systems represent fractions was described in Sec-
tion 8.1.2. Like negative representations, however, internal to computer sys-
tems there is no way to explicitly represent the radix point. As a result, al-
ternative techniques need to be developed to represent fractions in computer
systems.

The simplest method of representing fractions is to have a fixed position
for the radix point. This is called a fixed point number system. For example,
if a number system uses 8 bits total, and by convention the radix point is in
the middle (between bits 3 and 4 if the least significant bit is called bit 0 and
the most significant bit is called bit 7), there are then 4 bits to the left of the
radix point (representing the integer portion of the number) and 4 bits to the
right of the radix point (representing the fractional portion of the number. In
this example, the least significant bit (bit 0) has weight 2−4 or 1/16, and the
most significant bit has weight 23 or 8.

To be clear, one could reasonably call the integer number system a fixed
point system as well, since the radix point is fixed to be immediately to the
right of the least significant bit. This terminology, however, is almost never
used. If you hear someone describe a number system as a fixed point system,
they invariably mean a fractional system in which the radix point is at some
position within the bits of the number, not on the right end as is the case for
an integer.

There is a notation that is commonly used (and, unfortunately, commonly
abused) to denote fixed point fractional number systems, called Q notation.
In one version, the notation Qm,n means that the fixed point number system
has m+n bits, with m bits to the left of the radix point and n bits to the right
of the radix point. The example in the previous paragraph would therefore
be a Q4.4 number system.

The notation gets less precise when fixed point numbers are combined with
negative representations. It is common to use two’s complement in combina-
tion with fixed point numbers (which works quite well). However, their isn’t
good consistency in how Q notation is used in these circumstances.

Take our 8-bit fixed point numbers above. If, in addition, they use two’s
complement, bit 7 is now the sign bit. So far, so good. The range of repre-
sentable values is from -8 (1000.0000) to 715

16 (0111.1111). (We are showing
the radix point in the previous illustration to help the reader understand the
fixed point notation. Remember that the only way we know it is there is
because it is defined to be there as part of the number representation.)

The confusion comes in when trying to denote this fixed point, two’s com-

96

8.1. Numbers

plement number system using Q notation. Some would still call this a Q4.4
system, and simply add that it uses two’s complement. Others call this a Q3.4
system, using the logic that since bit 7 is a sign bit, it shouldn’t be included
in m, the count of the number of bits to the left of the radix point.

Since virtually all number systems used in computers are some multiple of
8 bits (an integral number of bytes), a reasonable guess when one is unclear
which form of Q notation is being used is to make the assumption that the
total number of bits is a multiple of 8.

To complicate matters even further, the most common use of fixed point
numbers is in digital signal processing applications, in which it is conventional
to place the radix point between the most significant bit and the next most
significant bit and also to use two’s complement representation. This gives a
range of values that is approximately ±1.

As an example, for a 16-bit number, the radix point is between bits 15
and 14, and the precise range of values is −1 (1.000000000000000) to +32767

32768
(0.111111111111111).

Rather than call this a Q1.15 (or Q0.15) number system, many have used
a shorthand notation, arguing that the m is already known (or ambiguous, see
above) and our 16-bit, two’s complement fixed point number system should
be denoted Q15. So, if you see a fixed point number system described as Q15,
you should interpret that to be a 16-bit number with the radix point between
bits 15 and 14, and if you see a number system described as Q31, you should
interpret that to be a 32-bit number with the radix point between bits 31
and 30.

8.1.6 Real Numbers

A clear limitation of any fixed point fractional number system is simply the
fact that the position of the radix point is fixed (i.e., it cannot vary from one
number to the next). To better approximate a wider range of numbers on the
real line, while maintaining the constraint that numbers must fit in a given
number of bits, computer systems use a more complicated number system that
includes the ability to move the radix point to the left and to the right. Not
surprisingly, this type of number system is called a floating point system.

Floating point numbers use the conventions that we commonly understand
as scientific notation. Staying for the moment in decimal notation, we can

97

8. Information Representation

represent any number we wish by specifying a mantissa and an exponent .

100 = 0.1× 103

3470 = 0.347× 104

0.0000072 = 0.72× 10−5

In the examples above, the mantissa represents the significant digits and is
constrained to be in the range 0 ≤ mantissa < 1. The exponent represents
the order of magnitude and is an integer. The general form is

M × 10E

where M is the value of the mantissa and E is the value of the exponent.
Switching from decimal to binary representation, virtually all floating

point numbers in modern computer systems conform to a standard notation
denoted IEEE-754 [5]. This standard describes two forms of floating point rep-
resentation. The first, called single precision, is a 32-bit representation and
the second, double precision, is a 64-bit representation. In both Java and C,
variables declared as float use the IEEE-754 single precision representation
and variables declared as double use the double precision representation.

Figure 8.2 shows a pictorial bit-level illustration of a single precision float-
ing point number. Bit 31 is the sign bit, s, with 0 indicating the number is
non-negative and 1 indicating the number is negative. Floating point num-
bers use sign-magnitude representation for the number as a whole. Bits 30
down to 23 are the eight bits that represent the exponent. The exponent uses
excess-127 notation to represent a value, E, that can range from -126 to +127
(the bit patterns 00000000 and 11111111 will be discussed below). That is,
if e is the unsigned value of bits 30 down to 23, the value of the exponent is
E = e− 127, as long as e 6= 0 and e 6= 255. Bits 22 down to 0 are 23 bits that
represent the mantissa; with the bits themselves representing the fractional
part of the mantissa and an implied 1 also part of the value (i.e., if f is the
value of the 23 fraction bits, with the radix point to the left of bit 22, the
value of the mantissa is M = 1 + f).

31 30 · · · 23 22 · · · 0
sign exponent bits fraction bits

Figure 8.2: Layout of IEEE-754 single precision floating point numbers.

When e 6= 0 and e 6= 255, we call this a normalized floating point number,
and the overall value is given by the following,

(−1)s × 2e−127 × (1 + f)

98

8.1. Numbers

where s designates the sign, e is the unsigned value of the exponent, and f is
the fractional part of the mantissa.

The value with the smallest magnitude that can be represented using nor-
malized single precision has e = 1 and f = 0, to give a value of 2−126. When
e = 0, the interpretation of the mantissa is altered, and the implied 1 is no
longer included. This is called a denormalized floating point number. For
denormalized numbers, the value of the exponent is a fixed −126, and the
value of the mantissa is M = 0 + f , which gives an overall value given by the
following expression.

(−1)s × 2−126 × f

Denormalized numbers allow the value to get closer to zero, at the cost of fewer
effective bits of precision (since the leading fraction bits are zeros). When
s = 0, e = 0, and f = 0, the value is zero, as indicated by the expression
above.

When e = 255, a number of special case values are supported by the
standard. When f = 0, that is a designation for infinity (either +∞ if s = 0
or −∞ if s = 1). When f 6= 0, that is a designation that means not a number,
which is frequently shown as NaN.

The layout of double precision floating point numbers closely follows the
form of single precision numbers, with the only exception being that the num-
ber of bits assigned to the exponent and to the fraction are larger. This is
shown in Figure 8.3. As before, there is one sign bit (now bit 63). Bits 62
down to 52 now form an 11-bit exponent, which is interpreted using excess-
1023 notation. Bits 51 down to 0 now form a 52-bit fraction.

63 62 · · · 52 51 · · · 0
sign exponent bits fraction bits

Figure 8.3: Layout of IEEE-754 double precision floating point numbers.

Normalized numbers (e 6= 0 and e 6= 2047) have their overall value given
by

(−1)s × 2e−1023 × (1 + f)

and denormalized numbers (e = 0) have their overall value given by

(−1)s × 2−1022 × f.

As in single precision, e = 2047 is used to indicate the special cases of infinity
and NaN.

99

8. Information Representation

8.2 Text: Characters and Strings

Numbers are far from the only information that we wish to represent us-
ing binary form. Far more prevalent than numbers is text, both individual
characters and sequences of characters that form words, phrases, sentences,
paragraphs, and books. We will start by describing common representations
for individual characters, and follow that with a description of string repre-
sentations, or sequences of characters.

8.2.1 ASCII

Unlike numbers, where there is a firm mathematical foundation on which to
base our binary number systems, characters are a bit more ad hoc. Typically,
the representation of characters is table driven, where some sequence of binary
bits corresponds to an individual character, and the relationship between the
bit sequence and the character is arbitrary and defined in a table.

An early character table that still gets used extensively is the American
Standard Code for Information Interchange (ASCII). It was developed in the
1960s for use with teletype machines. The basic ASCII character set corre-
sponds to codes that are 7 bits long (we’ll talk about extensions below), which
each 7-bit combination representing an individual character.

The table of ASCII codes is shown in Table 8.4. It is shown using groups of
three columns: the first showing the character that is represented, the second
showing the value of the code in hex, and the third showing the value of the
code in decimal. The hex and decimal values shown in the table are, however,
merely for the benefit of us humans reading the table. In fact, the code for
the letter A is 0100001.

When ASCII characters are stored in a byte, which is typical, the most
significant bit is set to 0. This helps us understand why the table only goes
up to 0x7f in hex values; the leading bit is always zero.

There are a few things that are important to note about the ASCII code.
First, the initial codes (and final code) don’t represent characters at all, but
instead are various control codes. For example, code 0x07 (BEL) would ring a
bell on the old physical teletype machine. Table 8.5 gives the descriptions for
each of the control codes; however, only a very few of them get used with any
consistency.

Second, there are many possible characters that are not included in the
code. For example, one cannot represent accented characters such as é or á,
nor can one put the tilde over an n such as ~n. Neither can one represent many
common currency symbols such as £, e, or ¥.

100

8.2. Text: Characters and Strings

Table 8.4: Table of ASCII codes.

Char Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec

NUL 00 0 SP 20 32 @ 40 64 ‘ 60 96
SOH 01 1 ! 21 33 A 41 65 a 61 97
STX 02 2 ” 22 34 B 42 66 b 62 98
ETX 03 3 # 23 35 C 43 67 c 63 99
EOT 04 4 $ 24 36 D 44 68 d 64 100
ENQ 05 5 % 25 37 E 45 69 e 65 101
ACK 06 6 & 26 38 F 46 70 f 66 102
BEL 07 7 ’ 27 39 G 47 71 g 67 103
BS 08 8 (28 40 H 48 72 h 68 104
HT 09 9) 29 41 I 49 73 i 69 105
LF 0a 10 * 2a 42 J 4a 74 j 6a 106
VT 0b 11 + 2b 43 K 4b 75 k 6b 107
FF 0c 12 , 2c 44 L 4c 76 l 6c 108
CR 0d 13 - 2d 45 M 4d 77 m 6d 109
SO 0e 14 . 2e 46 N 4e 78 n 6e 110
SI 0f 15 / 2f 47 O 4f 79 o 6f 111

DLE 10 16 0 30 48 P 50 80 p 70 112
DC1 11 17 1 31 49 Q 51 81 q 71 113
DC2 12 18 2 32 50 R 52 82 r 72 114
DC3 13 19 3 33 51 S 53 83 s 73 115
DC4 14 20 4 34 52 T 54 84 t 74 116
NAK 15 21 5 35 53 U 55 85 u 75 117
SYN 16 22 6 36 54 V 56 86 v 76 118
ETB 17 23 7 37 55 W 57 87 w 77 119
CAN 18 24 8 38 56 X 58 88 x 78 120
EM 19 25 9 39 57 Y 59 89 y 79 121
SUB 1a 26 : 3a 58 Z 5a 90 z 7a 122
ESC 1b 27 ; 3b 59 [5b 91 { 7b 123
FS 1c 28 < 3c 60 \ 5c 91 | 7c 124
GS 1d 29 = 3d 61] 5d 93 } 7d 125
RS 1e 30 > 3e 62 ˆ 5e 94 ˜ 7e 126
US 1f 31 ? 3f 63 5f 95 DEL 7f 127

101

8. Information Representation

Table 8.5: Control codes and descriptions.

Code Description Code Description

NUL null DLE data link escape
SOH start of heading DC1 device control 1 (X-ON)
STX start of text DC2 device control 2
ETX end of text DC3 device control 3 (X-OFF)
EOT end of transmission DC4 device control 4
ENQ enquiry NAK negative acknowledgment
ACK acknowledge SYN synchronous idle
BEL bell ETB end of transmission block
BS backspace CAN cancel
HT horizontal tabulation EM end of medium
LF line feed SUB substitute
VT vertical tabulation ESC escape
FF form feed FS file separator
CR carriage return GS group separator
SO shift out RS record separator
SI shift in US unit separator
SP space DEL delete

It is clear to see that the ASCII code was not designed with international
use in mind. It is very (American) English centered, which is not surprising
given its origins in the U.S.; however, the limitations illustrated above strongly
motivate expansion.

In spite of its limitations, ASCII is the original character representation
used in the C language, and the char data type in C is one byte, sized to hold
an individual ASCII character.

8.2.2 Unicode

A number of expansions to the ASCII code have been proposed. We will focus
our attention on the Unicode family of character encodings. The Unicode
standard is an attempt to handle most of the planet’s languages consistently,
and number of Unicode Transformation Format (UTF) encodings are defined
for Unicode characters, including UTF-8, UTF-16, and UTF-32.

UTF-8 is a variable length encoding of the Unicode character set that
maintains backward compatibility with ASCII. It uses 8-bit code units, in
which the first 128 codes are the same as their ASCII counterparts. Additional
characters are encoded as multi-byte sequences.

UTF-16 is a variable length encoding of the same Unicode character set;
however, it uses 16-bit code units, meaning that the minimum size of any

102

8.2. Text: Characters and Strings

character is 2 bytes. As a result of this decision, many more characters fit
into a single code unit than is the case when using UTF-8. This includes
all the characters from almost all Latin alphabets as well as Greek, Cyrillic,
Hebrew, Arabic, and several others. Characters in many oriental languages
(e.g., Chinese, Japanese, Korean) require 4 bytes per character when encoded
in UTF-16.

UTF-32 is a fixed length encoding of the Unicode character set. As such,
every character requires 4 bytes to be encoded.

Since a char in C is one byte, it can reasonably store UTF-8 single-byte
characters. Java’s internal representation is UTF-16, and the char data type
in Java is 2 bytes.

8.2.3 String Representations

Strings are composed of sequences of characters, and characters can be rep-
resented in any of the ways indicated above. Independent of the character
encoding, however, there two additional design decisions that must be made
when representing strings, “How do we indicate the length of the string?” and
“What data structure do we use to store the individual character codes?”

In general, there are two approaches to representing string length, and dif-
ferent languages use both of these approaches. In both cases, it is conventional
to store the characters themselves in an array whose type is appropriate for
the character set employed (e.g., the char type in C, which is one byte in size,
or the char type in Java, which is two bytes in size).

1. End marker – The first approach to representing string length is to use
a designated symbol to mark the end of the string in the array storing
the characters. Note that this mechanism relies on the existence of a
position available in the array (i.e, the array length must be at least one
greater than the string length).

This is the approach used in the C language, with a NULL character
(0x00, ’\0’) used as the end marker.

2. Explicit count – The second approach is to use an explicit count of
the characters in the string. This count is maintained separately from
the array storing the actual characters.

This is the approach used in the Java language, in which the String class
maintains (internally, as private instance variables) both an array of
characters and a count for each String object that is created.

103

8. Information Representation

This is also the approach used for transmitting UTF-8 strings in a
stream. A 16-bit character count is followed by the sequence of indi-
vidual UTF-8 characters.

8.3 Images

Consider the following sequence of bits: 0x002400081881423c. In binary, this
is:

0000 0000 0010 0100 0000 0000 0000 1000

0001 1000 1000 0001 0100 0010 0011 1100

If 0 represents a white spot, and 1 represents a black spot, this yields the
sequence of spots shown in Figure 8.4.

Figure 8.4: Sequence of spots that result when 0 represents a white spot and
1 represents a black spot.

Next we will arrange these white and black spots in rows, one byte (8 bits)
per row. This results in the image shown in Figure 8.5.

Figure 8.5: Image that results when spots are arranged in rows.

While fairly simple, this example illustrates many of the conventions used
generally in image representation.

1. Each bit of the example image specification corresponds to one position
in the image, commonly called a pixel . This will be generalized below
to more than one bit per pixel.

2. To correctly recreate the image, the number of pixels per row must be
known. In the case of the example it was 8 pixels per row. Other images
are, of course, much larger.

104

8.3. Images

3. The sequence of image pixel data typically starts in the upper-left corner,
which is designated as coordinate position (0, 0), and proceeds across the
first row. This is followed by the pixel data for the second row, starting
at coordinate position (1, 0), and continuing until the final row.

4. For an image that is n pixels tall and m pixels wide, the upper left
coordinate is (0, 0), the upper right coordinate is (0,m − 1), the lower
left coordinate is (n−1, 0), and the lower right coordinate is (n−1,m−1).

The above conventions apply to raw, or uncompressed, images. It is very
common to use compression techniques to reduce the storage requirements of
images. A frequently used technique is specified in the JPEG standard [9],
and images compressed using this technique normally are stored with a .jpg

file extension.

8.3.1 Monochrome Images

In the example image of Figure 8.5, each pixel is represented by a single bit,
and a 0 encodes a white spot while a 1 encodes a black spot. The next step to
more interesting images happens when, instead of a single bit per pixel, each
pixel is represented by a number that encodes shades of gray (between white
and black). If each pixel is represented by a byte, the possible values range
from 0 (white) to 255 (black). Such images are called monochrome images,
since they only include a single color (black), and vary its intensity.

An example of a 512 by 512 pixel monochrome image is illustrated in
Figure 8.6. With one byte dedicated to each pixel, and 262,144 (= 512× 512)
pixels, the memory required to store the image is 262,144 bytes. It gives a
much more realistic view than the simple image of Figure 8.5; however, it still
leaves quite a bit to be desired.

8.3.2 Color Images

We can extend the concept of monochrome images to include color by adding
information to each pixel that represents the color of that pixel. The most
common approach to doing this is to use three values for color representation:
red, green, and blue. With one byte for each color at each pixel, our 512 by
512 image will now require 786,432 bytes of memory.

The color image that corresponds to the same picture as Figure 8.6 is
shown in Figure 8.7.

105

8. Information Representation

Figure 8.6: Monochrome image that is 512 pixels tall and 512 pixels wide.
(Photo courtesy Tracy L. Chamberlain, © 2013.)

Figure 8.7: Color image that is 512 pixels tall and 512 pixels wide. (Photo
courtesy Tracy L. Chamberlain, © 2013.)

106

9 User Interaction

NOTE: This draft chapter is missing several subsections.

Any book that claims to describe how computers can interact with the real
world should not neglect the fact that users are an important aspect of the
real world that deserve special attention. Some of the interface mechanisms
described in earlier chapters (e.g., LED indicators, pushbuttons) constitute a
primitive form of user interaction. However, we have come to expect a much
richer form of interaction with the various digital devices that frequently help
define our day-to-day lives.

In this chapter, we will describe both physical mechanisms that enable
interaction (input and output) between the computer and its human users as
well as common techniques for exploiting the interaction capabilities.

9.1 Visual Display

The first set of techniques we will describe are those that support a visual
display, the output from the microcontroller is to be viewed by a human user.

9.1.1 Display Technologies

We have already discussed a simple visual display technology in Chapter 2, an
individual light-emitting diode (LED). Figure 2.4, repeated here as Figure 9.1,
illustrates the configuration in which the LED will be on when the digital
output pin is LOW.

As described in Chapter 4, the brightness of the LED can be controlled if it
is connected to one of the pulse-width modulated output pins. If we retain the
schematic configuration of Figure 9.1, the LED will have maximum brightness
for an analog output value of 0 and minimum brightness for an analog output
value of 255.

An alternative display technology that takes significantly less power to
operate is a liquid crystal display (LCD). An LCD exploits the polarization

107

9. User Interaction

Figure 9.1: Schematic diagram of LED digital output with active LOW con-
trol.

properties of light to either transmit or block light transmission at each specific
position of the display. As such, an LCD does not emit light itself, it relies
on either reflected light from in front of the display or a separate light source
positioned in back of the display.

Unlike an LED, which simply requires a current flowing through it to be
illuminated, an LCD requires significantly more complex control circuitry to
operate. As a result, it is more common to interface LCD displays using the
I2C bus.

9.1.2 7-segment Displays

A common display on small, hand-held devices is the 7-segment display , named
by the fact that there are 7 individual elements (or segments) that can be
independently on or off. An illustration of a 7-segment display is shown in
Figure 9.2. They can be constructed using either LED or LCD technology,
and both are frequently used for numeric display purposes.

Figure 9.2: Organization of 7-segment displays.

108

9.1. Visual Display

The organization of a 7-segment display is such that it is fairly straight-
forward to display any of the decimal digits, 0 through 9, by turning on the
appropriate selection of segments. Given the segment labeling shown in the
figure (which is fairly standard), we can form a 0 by turning on segments ‘a’,
‘b’, ‘c’, ‘d’, ‘e’, and ‘f’, leaving segment ‘g’ off. Alternatively, we can form a
1 by turning on segments ‘b’ and ‘c’, leaving all of the other segments off. All
of the combinations of segments on and off to show the digits 0 through 9 are
compiled in Table 9.1.

Table 9.1: Indication of on and off segments for 7-segment display.

Digit a b c d e f g Display

0 on on on on on on off

1 off on on off off off off

2 on on off on on off on

3 on on on on off off on

4 off on on off off on on

5 on off on on off on on

6 on off on on on on on

7 on on on off off off off

8 on on on on on on on

9 on on on on off on on

If we encode the contents of Table 9.1 into an array, with the least sig-
nificant 7 bit positions of each byte corresponding to the 7 segments of the
display, and the 7-segment display configured so that a LOW output on a pin
lights the segment (e.g., like in Figure 9.1), Figure 9.3 shows how to control
the display in a sketch.

There are a few things worth looking at carefully in this sketch. First, the
array segments[] is a direct transcription of the information in Table 9.1,
just coded in hexadecimal. Second, the use of the segments[] array in the if

statement illustrates a common design practice in the C language. Here, we

109

9. User Interaction

// segment pins are 17 to 23 (’a’ to ’g’)

const int segmentPin[] = {17, 18, 19, 20, 21, 22, 23};

// encoding of segment table

const byte segments[] = {0x7e, 0x30, 0x6d, 0x79, 0x33,

0x5b, 0x5f, 0x70, 0x7f, 0x7b};

void displayDigit(int digit} {

for (int i=0; i<7; i++) {

if (segments[digit] & (1 << i)) {

digitalOut(segmentPin[6-i], LOW); // turn segment on

} else {

digitalOut(segmentPin[6-i], LOW); // turn segment off

}

}

}

void setup() {

for (int i=0; i<8; i++) {

pinMode(segmentPin[i], OUTPUT); // set pin to digital output

}

}

void loop() {

// remainder of sketch, calling displayDigit() when desired

}

Figure 9.3: Fragment of sketch to control 7-segment display.

perform a bit-wise AND (the ‘&’ symbol) of the entry in the segments array
with a 1 that has been left-shifted (the ‘<<’ symbol) i times. The result of this
operation will be zero (all bits are 0) if the ith bit (counting from the right) of
segments[digit] is 0, and will be non-zero (the ith bit will be 1) if the ith

bit of segments[digit] is 1. Third, the index into the array segmentPin[]

in the digitalOut() invocations is 6-i because the segmentPin[] array is
ordered ‘a’ to ‘g’ and we extract the segments in the opposite order. We could
change this index to i by reordering the pins in the segmentPin[] array.

With a 7-segment display, the most common usage is for numeric informa-

110

http://www.arduino.cc/en/Reference/digitalOut

9.1. Visual Display

tion; however, if we are displaying hexadecimal numbers, the digits 0 through
9 are not sufficient. We can, of course, build any symbol that we wish using
the individual segments of the display. Table 9.2 extends Table 9.1 (i.e., adds
additional rows), illustrating how one can use a 7-segment display to represent
hexadecimal output as well.

Table 9.2: Hexadecimal digits in a 7-segment display.

Digit a b c d e f g Display

A on on on off on on on

B off off on on on on on

C on off off on on on off

D off on on on on off on

E on off off on on on on

F on off off off on on on

Another thing to notice about a 7-segment display is that the number of
segments is less than the number of bits in a byte. When we encoded which
segments are to be on or off in the segments[] array of Figure 9.3, the high-
order (most significant) bit of every entry was 0, because there was no meaning
associated with that bit.

Designers have taken advantage of that fact and added an additional in-
dicator to the traditional 7-segment display to serve as a decimal point. Il-
lustrated in Figure 9.4, the eighth segment is denoted by the label h and, like
each of the other segments, can be turned on and off individually.

Figure 9.4: 7-segment display including decimal point.

The above approach works well for a single-digit display, but frequently
we are interested in displays with more capability. In the following section,

111

9. User Interaction

we will discuss approaches to arbitrary characters (and images), but first we
will just extend our 7-segment display to more digits.

If we want to implement a 4-digit, 7-segment display, clearly the easiest
thing to do is simply position 4 copies of an individual 7-segment display right
next to one another, as illustrated in Figure 9.5. The difficulty comes in when
we try to use a sketch like that of Figure 9.3 to control all 4 digits, we don’t
have enough output pins to control all 4× 7 = 28 digital outputs required.

Figure 9.5: A 4-digit, 7-segment display.

We can solve this problem by time multiplexing between the 4 digits.
Instead of wiring the anode of each segment’s LED through a limiting resistor
to +5 V, we wire the anode to a digital output pin (4 pins for 4 digits, assuming
the 7-segment display has a common anode) and the limiting resistor is wired
in series with the cathode. The cathodes of segment ‘a’ for each digit are
then wired together and to a single digital output, with similar wiring for the
remaining cathodes of each segment. This is illustrated in Figure 9.6, in which
the 7-segment displays are shown, the common anode wires to the upper left
are to be connected to digital output pins, and the bused cathode wires to the
lower left are to be connected to digital output pins. Note that this requires
7 + 4 = 11 pins, instead of the earlier 28 pins.

Figure 9.6: Wiring for 4-digit, 7-segment, common-anode LED display.

In this way, we can send a HIGH to one (and only one) of the digits’ anodes
while sending a LOW to the segments that we wish to be on for that digit. A
short time later, we switch the HIGH output to the anode to the next digit,

112

9.1. Visual Display

with the third and fourth digits following on a similar schedule. A sketch that
does this is shown in Figures 9.7 and 9.8.

What results is a repeating sequence where one quarter of the time each
7-segment display is showing the digit that is desired. If the time associated
with each digit is approximately 5 ms, the entire 4-digit number is illuminated
every 20 ms, which is way too fast for our eyes to observe the fact that it is
flashing. To us it looks like each ‘on’ segment is on continuously.

9.1.3 Pixel-oriented Displays

The obvious limitation of 7-segment displays is that they are severely limited
in the things that they can effectively portray. While OK for numbers, and
usable for hex numbers in a pinch (assuming our users don’t get confused with
a b and think it is a 6), there are many other things we would like to be able
to output for users. The first, and most obvious, is arbitrary alphanumeric
characters.

The rest of the display technologies that we will consider are all pixel -
based. By this, we mean that individual spots in the display (called pixels)
can each be on or off, and the collection of all of the pixels forms an image to be
seen by the user. In virtually all pixel-oriented displays, the pixels themselves
are organized in a rectangular grid (e.g., an m by n display has m columns
and n rows of pixels), and hence they are sometimes referred to as a matrix
display .

The technology at each pixel can vary quite a bit. The simplest pixel-
oriented displays have an LED at each pixel (see Figure 9.9, which shows the
internal schematic of a 5 by 7 display, an appropriate size for one character).
However, other technologies include LCDs, plasma displays, vacuum fluores-
cent displays (not too common anymore), e-paper, and MEMS micro-mirrors
(used in DLP projectors). Some are monochrome (only support a single color
at each pixel), while others support a range of colors at each pixel.

The number of pixels also varies widely, from as small as 5 by 7 pixels
for displaying an individual character to high-resolution 1080p displays (with
1920 by 1080 pixels) for HDTV, and even larger. We will constrain our dis-
cussion to the smaller end of the range.

Let’s return to Figure 9.9. The first thing to note is that the display does
not provide individual connections to each pixel’s LED, but rather ties all the
anodes of the LEDs in each column together and ties all the cathodes of the
LEDS in each row together. Connections are then made to the columns and
to the rows, 5 + 7 = 11 connections, rather than the 5 × 7 = 35 connections

113

9. User Interaction

// digit pins are 24 to 27 (left digit 0 to right digit 3)

const int digitPin[] = {24, 25, 26, 27};

// segment pins are 17 to 23 (’a’ to ’g’)

const int segmentPin[] = {17, 18, 19, 20, 21, 22, 23};

// encoding of segment table

const byte segments[] = {0x7e, 0x30, 0x6d, 0x79, 0x33,

0x5b, 0x5f, 0x70, 0x7f, 0x7b};

int digitCounter = 0;

int digitDivisor = 1000;

int valueToDisplay = 0;

void setDigit(int whichDigit) {

for (int i=0; i<4; i++) {

if (i == whichDigit) {

digitalOut(digitPin[i], HIGH);

}

else {

digitalOut(digitPin[i], LOW);

}

}

}

void displayDigit(int digit} {

for (int i=0; i<7; i++) {

if (segments[digit] & (1 << i)) {

digitalOut(segmentPin[6-i], LOW); // turn segment on

} else {

digitalOut(segmentPin[6-i], LOW); // turn segment off

}

}

}

Figure 9.7: Sketch to control 4-digit, 7-segment display (continued in Fig-
ure 9.8).

114

9.1. Visual Display

void setup() {

for (int i=0; i<4; i++) {

pinMode(digitPin[i], OUTPUT); // set pin to digital output

}

for (int i=0; i<8; i++) {

pinMode(segmentPin[i], OUTPUT); // set pin to digital output

}

}

void loop() {

// set valueToDisplay to something interesting

setDigit(digitCounter);

displayDigit(valueToDisplay / digitDivisor);

digitCounter++;

digitDivisor /= 10;

if (digitCounter == 4) {

digitCounter = 0;

digitDivisor = 1000;

}

delay(5);

}

Figure 9.8: Sketch to control 4-digit, 7-segment display (continued from Fig-
ure 9.7).

that would be required otherwise. (Some displays swap the anode and cathode
connections, so pay attention to the schematic for your particular display.)

The second thing to note is that the display only contains the LEDs,
yet driving an LED from a microcontroller requires current limiting resistors.
Don’t just connect the columns and rows directly to your microcontroller, as
this can damage either the display, the micrcontroller, or both.

We control the display in essentially the same way that we controlled the
4-digit, 7-segment display in the previous section, we time multiplex groups of
LEDs and cycle through the groups faster than our eyes can respond. There
are a number of possible design options for doing this. In what follows below,
we will cycle through the columns (with cycling through the rows being an
alternative design option).

To light an individual LED, the voltage on the column wire must be higher

115

9. User Interaction

Figure 9.9: 5 by 7 matrix display.

than the voltage on the row wire. We therefore cycle through the columns by
connecting each column to a digital output pin and ensuring that one column
output is HIGH and the other four column outputs are LOW.

With the columns under appropriate control, we now need to send the
appropriate rows LOW to light the LEDs that are to be lit (if the row is HIGH,
the LED will not light). We connect a current limiting resistor to each row,
and connect the other side of the resistor to a digital output pin. Now, for
each column, we can light the desired LEDs in each row by sending the output
connected to that row LOW.

9.2 Hearing and Other Senses

9.2.1 Sound

The second set of techniques we will describe are those that support audio
output. In this case, the microcontroller is generating output that the human
is intended to hear.

It is important when considering sound to make a clear distinction be-
tween two different approaches to sound generation. In the first approach,
the microcontroller is managing a sound waveform that is generated by some

116

9.2. Hearing and Other Senses

peripheral device (e.g., a buzzer), and the control of the sound is limited to
turning it on or off, or possibly controlling its volume.

An on/off control is reasonable to accomplish with a digital output, as
described in Chapter 2 (see Figure 2.5). Controlling the volume of a sound
can be accomplished with an analog output, as described in Chapter 4 (see
Figure 4.7). Here, we have control over some of the properties of the sound
signal, but “what it sounds like” is not under direct software control.

In the second approach, the waveform itself is created in software. This
isn’t practical on the Arduino Uno platform we’ve been using up to this point,
for reasons we will describe in a moment, but the approach is worthy of dis-
cussion in any event.

Sound is a pressure wave that is continuous in intensity and also is contin-
uous in time. In the physical world, that implies that no matter how small a
difference one considers between two values (either pressure or time), there is
always a differential that is half of what was just considered. In both pressure
and in time, any differential value (i.e., difference between two values) can be
decreased to something smaller.

In the digital world, both of these continuous axes are approximated with
discrete values. Digital-to-analog converters are commanded by an integer
value parameter (in our case, the analogWrite() can take on values between
0 and 255, but does not support a non-integer value such as 12.75). Also,
when two subsequent digital-to-analog conversions happen, there is no way to
instruct the analog output value between the two conversions. The conversions
are at two discrete points in time. As such, the digital world approximates an
analog waveform by a series of discrete samples.

This is illustrated in Figure 9.10, which shows two full cycles of a sine wave
at 0.5 kHz frequency (the period of the sine wave is 2 ms). The points on the
graph are the output values (which happen at discrete points in time with a
sample period of 100 µs, or 10 kS/s). The values on the vertical axis are also
constrained to be integers (although that isn’t as easy to see at this scale).

This approximation is normally perfectly acceptable. The values between
discrete samples are shown as the curve in Figure 9.10. Under a few (normally
reasonable) assumptions, e.g., the sample rate is sufficiently faster than the
highest frequency present in the waveform, the continuous-valued waveform
actually doesn’t contain any new information that isn’t already present in the
discrete samples.

The assumptions mentioned in the previous paragraph are our first clue
as to why this doesn’t work very well on the Arduino Uno platform. The
sample rate supported by the digital-to-analog output on the Arduino Uno is

117

http://www.arduino.cc/en/Reference/analogWrite

9. User Interaction

0

50

100

150

200

250

0 1 2 3 4

V
a

lu
e

Time (ms)

Figure 9.10: 500 Hz sampled sine wave.

no where near fast enough to support the frequency range needed for sound
that can be perceived by humans.

The second reason this approach doesn’t work very well on the Arduino
Uno platform is that the amount of memory needed to store the sample values
for an interesting waveform (not just a single tone generated by a sine wave) is
much larger than the quantity of data memory available on the microprocessor.

The reader might have noticed at this point that while throughput the
book we have been referring to the microprocessor platform as an Arduino, but
in this section we became much more specific and referred to it as the Arduino
Uno. This is because there are different versions of the Arduino platform, and
some of the more capable versions have faster digital-to-analog converters and
more data memory. These more capable Arduinos can, reasonably, generate
sound by sending a series of samples to the analog output (and then driving
a speaker with the resulting waveform).

9.2.2 Other Senses

9.3 User Input

9.4 User Interface Design

118

10 Computer Architecture

The instruction set architecture (ISA) of a processor is traditionally seen as the
boundary between the hardware world and the software world. It is essentially
the abstraction that allows hardware designers and software designers to co-
exist without constantly having to re-engineer everything they do because of
choices made within the other discipline.

In this chapter, we will consider the underlying computer architecture that
makes up the AVR microcontroller family. Included in this is the set of ma-
chine instructions that are directly executable by the microcontroller. These
machine instructions constitute the machine language of the microcontroller.
We will also introduce the human-readable and -writable variation of the ma-
chine instructions, commonly called assembly language, which is primarily the
subject of the next chapter.

10.1 Basic Computer Architecture

A high-level view of the AVR microcontroller family computer architecture
is shown in Figure 10.1. When all of these components are included within
a single chip, the chip is referred to as a microcontroller . In a larger, more
complex processor, the program memory, data memory, and peripherals are
typically off-chip, and the chip is referred to as a microprocessor . These
definitions, however, are far from ubiquitous.

10.1.1 Architecture Components

There are a number of components that make up an AVR microcontroller.
Items that are included in a microcontroller that are external to a micropro-
cessor are the program memory, the data memory, and the peripherals. We
will start our discussion with these components.

The AVR has what is called a Harvard architecture, in which the program
memory and the data memory are physically separate memory subsystems,

119

10. Computer Architecture

Figure 10.1: AVR microcontroller architecture. All of these components reside
within an individual integrated circuit chip.

often with distinct properties. In the case of the AVR, the machine instruc-
tions are each 16 bits wide, and the program memory is addressable at the
instruction level (i.e., each address in the program memory references a 16-bit
storage location which holds one instruction). The data memory is logically
8 bits wide, meaning that each data memory address references an 8-bit stor-
age location which holds one byte.

Microcontrollers generally also incorporate some number of peripherals
onto the chip as well, and the AVR is no exception. The AVR microcontroller
includes digital inputs, digital outputs, analog inputs, and analog outputs in
its peripheral set.

The remaining components that make up the microcontroller are some-
times referred to as the processor components. The register file is the set of
memory elements that are internal to the processor yet visible to the program-
mer (not necessarily a high-level language programmer, but a programmer
who is writing machine language or assembly language). The arithmetic/logic
unit (ALU) is the component that is responsible for most data manipulation
operations (e.g., addition, subtraction, logical and, logical or, etc.).

Two additional memory elements are the program counter (PC) and the
instruction register (IR). The program counter is responsible for keeping track
of the next instruction to be executed, and the instruction register holds the
contents of that instruction inside the processor. The control logic is respon-
sible for coordinating all of the operations of the microcontroller. The set of

120

10.2. Instruction Set Architecture (ISA)

operations that result in running code is frequently called the fetch-decode-
execute cycle.

10.1.2 Fetch-Decode-Execute Cycle

The fetch-decode-execute cycle proceeds as follows:

Fetch The address that is currently in the program counter is used to access
the program memory and retrieve (or “fetch”) the instruction to be
executed. This instruction is placed in the instruction register.

Decode The instruction currently in the instruction register (that has just been
fetched) is provided to the control logic, which interprets (or “decodes”)
the instruction to decide three things:

1. What operation is to be performed by the instruction. E.g., is it
an addition operation or is it a conditional branch operation? This
is frequently called the opcode.

2. What operands comprise the data to be operated upon and the
location to store any results.

3. What is the next instruction to be executed. Unless explicitly
changed, the default next instruction is the one at the next ad-
dress following the current instruction. Control flow instructions,
however, can alter this default.

Execute The actual actions to be performed by the instruction are carried out
(or “executed”). If the instruction is an arithmetic or logical operation,
the ALU is involved. If the instruction is a load or store, memory is
accessed. If the instruction is a branch, the program counter is altered
to a new value.

While there are many variations from one processor to another, the above
notion of a fetch-decode-execute cycle is common to almost all of them.

10.2 Instruction Set Architecture (ISA)

The instruction set architecture (ISA) is an abstraction boundary that essen-
tially forms a contract between the hardware world and the software world.
It defines what is observable and directly controllable by software, yet does
not prescribe how the hardware implements the functions.

Traditionally, an ISA comprises the following four components:

121

10. Computer Architecture

• register file – the programmer-visible storage within the processor (vis-
ible to the machine language programmer, not a high-level language
programmer).

• memory model - the logical organization of the memory (as viewed by
the machine language program).

• instruction set – the collection of machine language instructions that
are directly executable by the processor.

• operating modes – some processors have subsets of the instructions
that are privileged based on being in a given “mode”.

We will consider each of the above ISA elements in turn. By necessity, we
will not cover the complete ISA of the AVR microcontroller, but will instead
provide a representative subset. Full details of the AVR can be found in the
instruction set manual from Microchip [6].

10.2.1 Register File

The register file is the machine language program’s view of storage that is
internal to the processor. In the AVR microcontrollers, this is comprised of
32 general purpose registers (named r0 to r31) and a status register (named
SREG).

The general purpose registers are each 8 bits wide. To store 16-bit values,
they are normally paired (e.g., r31:r30) with the high-order bits of the 16-bit
value going in the odd-numbered (larger label) register and the low-order bits
going in the even-numbered (smaller label) register.

The general purpose registers can hold data or addresses; however, regis-
ters r26 through r31 are commonly used for addresses, and as such have syn-
onyms associated with each of three register pairs. The register pair r27:r26
is also known as X, r29:r28 is also known as Y, and r31:r30 is also known as
Z. We will see examples of the use of these register pairs for addressing later,
for now it is sufficient to know that they have more than one name.

The status register, SREG, is an 8-bit register that gives information about
what has happened previously on the processor. Informally, what is the pro-
cessor’s “status”?

More precisely, it comprises 8 individual status bits, each of which has its
own dedicated function. Tabletbl:sreg gives the meaning and shorthand label
for each bit of the status register.

122

10.2. Instruction Set Architecture (ISA)

Table 10.1: Bits of status register SREG.

Bit 7 6 5 4 3 2 1 0

Label I T H S V N Z C

Meaning interrupt transfer half sign signed negative zero carry
enable bit carry bit overflow flag flag flag

As an example of how the status register operates, when the processor
executes an add instruction, if the result of the addition is negative (i.e., if the
most significant bit of the result is 1), the N bit in the SREG will be set to 1,
otherwise it will be set to 0. Likewise, if the result of the addition is zero, the
Z bit will be set to 1, otherwise it will be set to 0. Subsequent instructions
(e.g., conditional branches) can then test the value of individual bits in SREG

and act accordingly.

10.2.2 Memory Model

The memory model is essentially the machine language programmer’s view of
system memory. In the AVR microcontroller family, there are several items
that can be accessed through the memory interface.

Program Memory

The AVR’s Harvard architecture means that the program memory is separate
from the data memory. The program memory is constructed using flash mem-
ory technology, which has the advantage that it is non-volatile. It retains its
contents even when the power is removed.

As a result, if you provide power to an Arduino board and don’t download
a new program, it will run the last program that was downloaded, since that
is what the processor finds when it fetches instructions from the program
memory.

Because most instructions in the AVR family are 16 bits in length, the
designers chose to have the program memory organized around 16-bit words.
This means that an individual address that points to a single location in the
program memory is referring to a 16-bit value.

The program memory is further divided into application program memory
and a boot loader. The boot loader is responsible for receiving new programs
from the USB link, loading them into application program memory, and start-
ing them up. If no new program comes from the USB, then the boot loader
starts up the program that is currently resident in the application program
memory.

123

10. Computer Architecture

Data Memory

The primary memory used by programs is the data memory. It is the mem-
ory that is accessed on load and store instructions. Data memory is byte
addressable, meaning that each address refers to an individual byte, or 8 bits.

The largest region of data memory is SRAM that is internal to the chip and
available to store variables or anything else desired by the program. SRAM, or
Static Random Access Memory, is a memory technology that supports single-
cycle read and write operations to any location (address) in the memory.
SRAM is volatile, so when power is lost, the contents stored in memory are
not retained.

In addition to the internal SRAM, addresses in data memory are used to
access other structures, described below.

Non-volatile Memory

The third memory type is program-accessible non-volatile memory, which is
constructed using EEPROM technology. EEPROM, or Electrically Erasable
Programmable Read Only Memory, is a memory technology that, like flash,
does not lose its contents when power is removed. Like the data memory, it
is 8 bits wide and byte addressable. The major difference between EEPROM
and flash is that EEPROM can be altered (erased and rewritten) one byte at
a time, where flash is typically bulk erased and then rewritten.

Peripherals

Chapters 2 through 5 discussed approaches to send signals in and out of the
microcontroller. Devices that are attached in this way are called peripherals.
In the AVR instruction set architecture, there are two mechanisms for access-
ing peripherals: (1) in and out instructions, and (2) through the memory
interface.

The in and out instructions allow for quick (single execution cycle) access
to 64 addresses on what is called an I/O bus. Individual peripherals are
assigned to unique addresses on this bus, and it is common to call individual
locations on the bus I/O registers. With 64 addresses on the I/O bus, the
range of I/O addresses is from 0x00 to 0x3F.

In addition to being available on the I/O bus, the I/O registers can also be
accessed via the memory interface (i.e., they also have addresses in the data
memory). The I/O registers start at memory location 0x0020, so that I/O
address 0x00 accesses the same I/O register as memory location 0x0020, I/O

124

10.2. Instruction Set Architecture (ISA)

address 0x01 is the same I/O register as memory location 0x0021, and I/O
address 0x3F is the same as memory location 0x005F.

Because the number of needed addresses has grown over time, the AVR
family supports an extended set of I/O registers, beyond the original 64. These
extended I/O registers are are not available via the in and out instructions,
but are only available via the data memory, starting at data memory loca-
tion 0x0060 and running through 0x00FF. The internal SRAM then starts at
memory location 0x0100.

In addition to the above items, the memory interface can also be used as
an alternative path to access the processor’s state. This includes not only
the register file described in Section 10.2.1, but also additional registers that
comprise part of the processor’s workings. The register file is accessible as
data memory addresses 0x0000 through 0x001F, and the remaining registers
are included in either the I/O registers or the extended I/O registers.

Table 10.2 shows some of the peripherals that can be accessed by the pro-
gram through the memory interface. Both the data memory address and the
I/O address are shown along with the label and description of the peripheral.

Several of the table entries are worth specific mention. Memory addresses
0x0023 through 0x002B (I/O addresses 0x03 through 0x0B) comprise three
groups of addresses, and within each group there are three addresses associated
with an I/O port . These 8-bit registers are the interface to the digital output
and input pins described in Chapters 2 and 3. Each port is associated with
up to 8 physical pins on the chip.

Within each group, DDRx is the data direction register, which is used to set
whether each pin is an INPUT or an OUTPUT in response to a call to pinMode().
The PINx addresses are used to read the input values for digitalRead(), and
the PORTx addresses are used to write output values using digitalWrite().

Memory address 0x005F (I/O address 0x3F) is the status register, SREG,
described in Section 10.2.1. Memory address 0x0060 is a watchdog timer
control register. A watchdog timer is a circuit that independently keeps track
of time and is used to ensure that the software on the processor continues to
operate. Based on a settable timeout value, the software is required to “reset”
the watchdog time prior to the timeout. If this watchdog timer reset does not
happen, the watchdog timer circuitry will reset the processor, in an attempt
to correct whatever problem caused the software to miss its deadline.

Other entries in the I/O address space (not shown in the table) provide
access to the free-running counter used for timing that was described in Chap-
ter 6 and control other aspects of the processor’s operation.

125

http://www.arduino.cc/en/Reference/pinMode
http://www.arduino.cc/en/Reference/digitalRead
http://www.arduino.cc/en/Reference/digitalWrite

10. Computer Architecture

Table 10.2: Peripherals accessible through the memory interface.

Memory I/O Label Meaning
Address Address

0x0000 – r0 general purpose register r0
0x0001 – r1 general purpose register r1

. . . .

. . . .

. . . .
0x001E – r30 general purpose register r30
0x001F – r31 general purpose register r31

0x0020 0x00 – reserved
0x0021 0x01 – reserved
0x0022 0x02 – reserved
0x0023 0x03 PINB input pins port B
0x0024 0x04 DDRB data direction register port B
0x0025 0x05 PORTB data register port B
0x0026 0x06 PINC input pins port C
0x0027 0x07 DDRC data direction register port C
0x0028 0x08 PORTC data register port C
0x0029 0x09 PIND input pins port D
0x002A 0x0A DDRD data direction register port D
0x002B 0x0B PORTD data register port D

. . . .

. . . .

. . . .
0x005D 0x3D SPL stack pointer (low byte)
0x005E 0x3E SPH stack pointer (high byte)
0x005F 0x3F SREG status register (see Table 10.1)

0x0060 – WDTCSR watchdog timer control register
. . . .
. . . .
. . . .

0x0078 – ADCL analog-to-digital conv. register (low byte)
0x0079 – ADCH analog-to-digital conv. register (high byte)

. . . .

. . . .

. . . .
0x00FF – – reserved

126

10.2. Instruction Set Architecture (ISA)

Memory Map

The memory model can be shown visually in a diagram known as a memory
map. Figure 10.2 shows the memory map for the AVR microcontroller used
in the Arduino Uno.

Figure 10.2: AVR microcontroller memory map.

There is a separate rectangle for each memory subsystem, the program
memory, data memory, and non-volatile memory. The width (in bits) of each
memory subsystem is shown across the top of the rectangle that represents
that memory. Addresses (starting at the top and increasing as you look down)
are indicated immediately to the left of the rectangle, and different regions
within the memory are indicated within the rectangle.

10.2.3 Instruction Set

The third component of the instruction set architecture, after the register
file and the memory model, is the actual instructions themselves. These are
the specific instructions that can be directly executed by the processor, the
machine language of the AVR family of microcontrollers.

127

10. Computer Architecture

The AVR family is what is known as a 2-address, load/store machine.
As such, most instructions operate to and from the register file, rather than
interact with memory. The “2-address” label means that instructions reference
2 registers, and one of the registers acts both as a source of data and the
destination for the result. The “load/store” label means that explicit load
and store instructions move data back and forth between memory and the
register file and the operations happen on data in the register file.

Classes of Instructions

We will separately consider instructions as members of several classes, or
groups: arithmetic operations, logical operations, control flow, data move-
ment, and system operations.

The following syntactic conventions will be used as part of the descriptions
of individual instructions and the addressing modes that follow:

• Rd – destination register (one of r0 to r31)

• Rs – source register (one of r0 to r31)

• k – constant

• X, Y, Z – index register (X is r27:r26, Y is r29:r28, Z is r31:r30)

The arithmetic operations include addition, subtraction, increment, decre-
ment, complement, and multiplication (but not division). Let us examine the
add instruction in some detail. The syntax for a register to register addition
is as follows:

add Rd,Rs

The operation that gets performed is

Rd← Rd + Rs

in which the initial value in Rd is added to the value in Rs and the result is
stored as the new value of Rd.

Also, the individual bits of the status register, SREG, are set or cleared
based upon the value of the result. In particular, six of the eight bits of SREG
will be altered based on the results of the add instruction. Table 10.3 shows
how they are effected. The remaining two bits in SREG are not changed by the
instruction.

128

10.2. Instruction Set Architecture (ISA)

Table 10.3: SREG bits effected by add instruction.

Label Name Definition

H half carry set if carry from bit 3
S sign bit N ⊕ V, for signed tests
V signed overflow set if two’s complement overflow
N negative flag equal to most significant bit of the result
Z zero flag set if result is 0x00
C carry flag set if carry from bit 7 (msb)

Similar to the add instruction, the adc (add with carry) instruction is used
to perform additions on data elements that are larger than 8 bits. The syntax
is

adc Rd,Rs

and the operation that gets performed is

Rd← Rd + Rs + C.

The value in Rd is added to the value in Rs, plus the carry bit, C, of the status
register, SREG. The result is stored in Rd. If we wanted to add the 16-bit value
in the register pair r7:r6 to the 16-bit value in the register pair r9:r8, the
code would be as follows:

add r6,r8

adc r7,r9

in which the add instruction sums the lower order bits in r6 and r8, with any
carry out being placed in the C bit of SREG. The subsequent adc instruction
sums the higher order bits in r7 and r9, including any carry from the lower
order bits’ sum.

Some instructions require only one operand. For example,

inc r17

increments (adds one to) register r17.

The logical operations include AND, OR, NOT, exclusive-OR, shift, and
set/clear bits. Expressing logical operation instructions is very similar to
arithmetic operations. Consider the logical AND operation. The syntax is

and Rd,Rs

129

10. Computer Architecture

while the operation that gets performed is

Rd← Rd ∧ Rs

where each bit of Rd is combined with each bit of Rs using the logical AND
operation with the result stored in Rd.

The normal instruction flow is once an instruction has completed its exe-
cution, the next instruction in program memory is fetched. Control flow in-
structions are those that have the potential to change this normal flow. These
include unconditional control flow operations, such as jumps, subroutine call,
and return, as well as conditional control flow operations, often called branch
instructions.

Branch instructions will either branch or not branch, based on a Boolean
condition that is tested as part of the instruction. Most branch instructions
are conditional on one or more bits in the status register, SREG. For example,
the brne instruction (branch if not equal) will branch if the Z bit of SREG is
clear. This instruction might come immediately after a compare instruction,
e.g., the instruction sequence

cp r3,r22

brne loop

first compares register r3 with r22, which will set the Z bit of SREG if r3 − r22

is equal to zero (i.e., if r3 and r22 are equal). The conditional branch instruc-
tion then branches to the program location labeled loop if the two registers
are not equal to one another (i.e., the Z bit is not set).

Data movement instructions includes register to register transfers, load
and store instructions that move data back and forth between registers and
memory, and I/O instructions that move data to/from peripheral devices..
The simplest data movement instruction copies data from one register to an-
other (leaving the source register unaltered). E.g.,

mov r23,r22

copies the contents of r22 into r23. Note, mov might make you think of the
word “move”; however, it leaves the source register unchanged, so “copy” is a
better way to think about what the instruction actually does. We can load a
constant value into a register using the load immediate instruction:

ldi Rd,k

130

10.2. Instruction Set Architecture (ISA)

which loads the constant value k into register Rd.

When a load instruction is reading a value from memory, there are a
number of methods that can be used to specify the address in memory to be
read. The simplest of these is to directly specify the address as part of the
instruction, with the load direct from data space instruction:

lds Rd,k

which accesses the memory at address k and copies the contents of memory
at address k into register Rd. Other methods for specifying the address to be
accessed are called addressing modes and are described below.

Similar to the load direct from data space instruction is the store direct
to data space instruction:

sts k,Rs

which copies the data in register Rs and stores it in the memory location at
address k.

While it is possible to access all the peripheral devices via the memory
system (see memory map in Figure 10.2), there are also dedicated instructions
for accessing the I/O registers in less time (and smaller instruction size) than
load and store instructions. The in instruction supports reading from an I/O
peripheral:

in Rd,k

reads data from I/O register k (0 ≤ k ≤ 63) into general purpose register Rd,
and the out instruction writes to an I/O peripheral:

out k,Rs

sends the contents of general purpose register Rs to I/O port k.

Finally, there are a number of system operations that don’t conveniently
fit into any of the categories above. For example, the nop is “no operation”
(it is an instruction that has no effect other than to take time to execute) and
the wdr instruction is the watchdog timer reset instruction.

Addressing Modes

Instructions that operate on data must first identify the input data to the
operation and identify the location in which to store the result. Generally,

131

10. Computer Architecture

techniques used to specify either data source or destination are called ad-
dressing modes, and the AVR has a number of addressing modes which we
will describe below.

Unfortunately, there is great disparity in the naming of addressing modes,
so we will use the commonly used name in the description, but will also in-
clude the specific name that Atmel uses in its documentation for the AVR
microcontroller family.

The simplest addressing mode is immediate. Here, the value to be operated
on is included as part of the instruction itself. As an example, if we have a
value in register r9 and we wish to subtract 7 from that value, the 7 is part
of the instruction, e.g.,

subi r9,7

in which the operation to be performed is as follows:

r9← r9− 7

and the fact that the addressing mode is immediate is conveyed as part of the
instruction, subtract immediate, subi.

The most commonly used addressing mode is register addressing . (Atmel
calls this “register direct.”) In this case, the source (or destination) of data
is one of the 32 general purpose registers. In the example above, the 7 is
immediate addressing and the register r9 is register addressing. In this case, r9
is both a source and destination. The majority of operations to be performed
on data use the register addressing mode, enabling efficient data movement
from the register file to the ALU and back to a register.

The first addressing mode we will cover that accesses memory is direct
addressing. (Atmel calls this “data direct” or “I/O direct.”) In direct ad-
dressing, the address in memory is directly specified in the instruction. In the
case of a load instruction, the source is a memory address, e.g.,

lds r12,0x0500

loads the value in memory location 0x0500 into register r12. In the case of a
store instruction, the destination is a memory address, e.g.,

sts 0x1000,r12

stores the value currently in r12 into memory location 0x1000. Direct ad-
dressing is also appropriate for accessing the I/O registers using the in and
out instructions as well. In this case, the address specified is not a memory
address, but rather an I/O address (in the range 0 to 63).

132

10.2. Instruction Set Architecture (ISA)

While direct addressing works well when the address to be accessed is
known when the program is written, it isn’t as useful if the address depends
on the program input. Consider the case of an array reference. Which specific
address we wish to access depends upon the value of the array index.

To enable the address to be computed at run time, we use the indirect
addressing mode. (Atmel calls this “data indirect.”) Recall that 3 registers
pairs (r27:r26, r29:r28, and r31:r30) have alternate names (X, Y, and Z,
respectively). The register pairs are sometimes called index registers. The
indirect addressing mode uses the contents of one of these register pairs as the
address of the data to be loaded (read) or stored (written).

For example, the instruction sequence below:

ldi r26,0x00

ldi r27,0x05

ld r12,X

first puts 0x0500 into the index register X (the least significant byte into r26

and the most significant byte into r27) and then loads the value at memory
location 0x0500 into register r12 (using the ld instruction). Similarly, the
instruction sequence

ldi r28,0x00

ldi r29,0x10

st Y,r12

puts 0x1000 into the index register Y and then stores the value initially in
register r12 into memory location 0x1000.

The indirect addressing mode can be extended to also alter the index
register used to access memory. In the post-increment mode, the index register
is incremented after being used to access memory. In the pre-decrement mode,
the index register is decremented prior to being used to access memory. The
syntax for a post-increment indirect access is

ld Rd,Y+

for a load, and the syntax for a pre-decrement indirect access is

st -Z,Rs

for a store.

There are a few specialized addressing modes for program memory access;
however, we will not discuss them here.

133

10. Computer Architecture

10.2.4 Operating Modes

Complex processors often have different operating modes, in which different
subsets of the instruction set are enabled or not enabled. For example, the
control mechanisms for the virtual memory subsystem on an Intel processor
in a PC cannot be accessed by a regular user’s program.

The Atmel AVR family does not effectively have operating modes, so we
can avoid the subject, other than to include it in the list of what constitutes
a processor’s ISA.

134

11 Assembly Language

In the examples of instructions provided in Chapter 10, we actually cheated
a bit. In the real machine, instructions are binary values (typically 16 bits in
length) that are stored in the program memory. The examples we provided
are actually written in a more human-readable form called assembly language.

In this chapter, we will clarify the distinction between assembly language
and machine language, as well as discuss the options available to the assem-
bly language programmer that do not get translated (directly) into machine
language. Once a program has been expressed in assembly language, a tool
(called the assembler) translates the assembly language source code into ma-
chine language (often called object code). We will also spend some time dis-
cussing how to author good assembly language code, including how to mix
assembly language and high-level language code in one sketch.

11.1 Machine Instructions

The individual instructions that are stored in the program memory and are
directly executed by the processor constitute the machine language of the
processor. Machine language instructions are encoded in binary, with the bit
pattern both specifying the operation itself (i.e., the opcode) and the operands
(i.e., source and destination of the data).

For example, the encoding for several representative instructions is given
in Table 11.1. Some of the table entries are for specific operands, and others
show how to encode the operands in the instruction word. When encoding
operands, the general purpose registers are numbered 0 to 31, requiring 5
bits to specify. Register Rd is specified using the 5-bit value d4d3d2d1d0 and
register Rs is specified using the 5-bit value s4s3s2s1s0. Constants are specified
in a similar way, with the distinction that different constants have different
numbers of bits allocated in the instruction format. Almost all instructions
are 16 bits, with a few having an additional 16-bit word (that immediately

135

11. Assembly Language

Table 11.1: Machine language encoding of several instructions. In the table,
di is bit i of Rd, si is bit i of Rs, and ki is bit i of k.

Instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

nop 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

wdr 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0

inc Rd 1 0 0 1 0 1 0 d4 d3 d2 d1 d0 0 0 1 1

inc r12 1 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1

ld Rd,X 1 0 0 1 0 0 0 d4 d3 d2 d1 d0 1 1 0 0

ld r6,X 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0

mov Rd,Rs 0 0 1 0 1 1 s4 d4 d3 d2 d1 d0 s3 s2 s1 s0
mov r3,r1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1

add Rd,Rs 0 0 0 0 1 1 s4 d4 d3 d2 d1 d0 s3 s2 s1 s0
add r7,r4 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0

subi Rd,k 0 1 0 1 k7 k6 k5 k4 d3 d2 d1 d0 k3 k2 k1 k0
subi r21,2 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0

lds Rd,k 1 0 0 1 0 0 0 d4 d3 d2 d1 d0 0 0 0 0

k15 k14 k13 k12 k11 k10 k9 k8 k7 k6 k5 k4 k3 k2 k1 k0
lds r8,0x100 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

follows in program memory).

Note an interesting feature of the subi instruction, subtract immediate.
It only has 4 bits to specify Rd, the destination register. Instead of being
available to use on all 32 general purpose registers, the subi instruction can
only operate on registers r16 to r31, and the register Rd is specified by the
bits 1d3d2d1d0.

Restrictions like the one above are fairly common in the machine language
of many processors. With only 16 bits to specify the full instruction, the de-
signer of the instruction set often must choose whether to give access to the
full range of registers (requiring 5 bits of the 16 available in the instruction
word) or limit the range of registers accessible and increase the range of con-
stants that can be specified (in this case, enabling constants of length 8 bits,
which can range in value between −128 and +127).

11.2 Assembly Language Instructions

In the code examples of Section 10.2.3 and in the left-most column of Ta-
ble 11.1, we have been using the assembly language expressions for the in-
structions of interest. The general form for assembly language instructions

136

11.3. Labels and Symbols, Constants and Numbers

is:

label: opcode operands ;comments

where the label in an optional identifier (specifically, an identifier of the
address in program memory where the instruction is stored), the opcode is
the name of the instruction itself, sometimes called an operation code, the
operands specify the source and/or destination of the data needed to exe-
cute the operation, and the comments are ignored by the program (they are
intended for the human reader).

It is conventional for the semi-colon (;) to delimit comments in assembly
language. However, in modern assemblers C/C++ style comments (either //
or /* */) are also commonly recognized.

11.3 Labels and Symbols, Constants and Numbers

Whenever the programmer inserts a label into the assembly language source,
that declares a symbol (within the assembly process) that can then be used
elsewhere in the program. An immediately obvious use of this capability is to
provide labels whenever a program might wish to do conditional branching.

Consider the following code snippet:

ldi r3,2 ; r3 <- 2

loop: add r7,r8 ; r7 <- r7 + r8

dec r3 ; r3--

brne loop ; branch if r3 <> 0

in which r3 is initialized to 2, and after r8 has been added to r7, r3 is
decremented by one. The decrement instruction, dec, sets the Z bit in SREG

to 1 if the result of the decrement is zero. The first time that dec is executed,
the result is not zero, so the brne instruction (BRanch if Not Equal to zero)
will take the branch to loop, which has been declared to be the address of
the add instruction. Once r3 does equal zero, the brne instruction no longer
branches, and the code executes the instruction that immediately follows brne.

Another observation to make is that when initializing r3 to the value 2, we
did not specify the base. By default, when constants are specified in assembly
language, they are in base 10 (as is the case in higher-level languages like
C/C++ and Java). There are a variety of ways that alternative bases can
be expressed, and the assembly language programmer must check the manual
of the specific assembler being used to know which is correct. We will stick

137

11. Assembly Language

with the same convention used in C/C++ and Java, that a 0x preceding the
numeric constant means that the constant is being expressed in hexadecimal.

11.4 Assembly Language Pseudo-operations

In addition to assembly instructions that translate directly in machine instruc-
tions, the assembler also recognizes instructions that in reality are aimed at the
assembler itself. These pseudo-operations (or pseudo-ops) are also sometimes
called assembler directives.

To distinguish pseudo-ops from regular instructions, it is conventional for
them to begin with a period (.) as the first character of the operation. For
example,

.equ portd,0x0b

uses the .equ pseudo-operation to define the symbol portd as equivalent to
the expression 0x0b. That symbol can then be used in place of a numerical
constant in a subsequent in or out instruction, such as

in r7,portd ;read from I/O port 0x0b

which reads from the I/O port 0x0b but references the port using the symbolic
name portd.

11.4.1 Sections

One of the tasks required of the assembly language programmer is to specify
what items are to be assigned to the various memories. On the AVR family,
the code goes into the program memory (often called the text section or text
segment), and the data is either in the non-volatile memory (EEPROM) or
data memory (SRAM). The SRAM is, in assembly language terms, called the
data section or data segment.

11.4.2 Data Section Pseudo-ops

The data section starts with the following pseudo-op:

.data

which declares that the assembly language statements to follow are associated
with the data memory (SRAM).

138

11.4. Assembly Language Pseudo-operations

There are a collection of pseudo-ops that are supported in the data section
for reserving space in the data memory. The simplest is .byte, which reserves
space and gives it an initial value, i.e.,

label: .byte expression[,expression]

which reserves one byte for each expression (the second and subsequent ones
are optional) and initializes it with the value of expression. The inclusion
of the label associates the symbol label with the address of the first byte
allocated.

We can make label into a global symbol (visible to the linker) through
the use of the .global pseudo-op:

.global label

however, be careful to remember that the linker does not have any notion of
type, so it is only the address of label that is available to other files.

We can allocate a C-style string (null-terminated) via the .asciz pseudo-
operation, e.g.,

errstr: .asciz "Error"

reserves 6 bytes of data memory and initializes it to the ASCII characters ’E’,
’r’, ’r’, ’o’, ’r’, and ’\0’. The label errstr is associated with the first
address in the string.

Arbitrary sized chunks of data memory can be allocated with the .space

pseudo-op, which takes two arguments, the size of the chunk of memory to
reserve (in bytes) and the value to store in each byte. For example,

array1: .space 10,0

will reserve 10 bytes of memory (initialized to 0) and associate the label array1
with the first allocated byte.

11.4.3 Text Section Pseudo-ops

The text section starts with the following pseudo-op:

.text

which declares that the assembly language statements to follow are code (pro-
gram instructions).

139

11. Assembly Language

If we wish a label declared in the .text section to be available to the linker
(i.e., enabling it to be called from another file), we again use the .global

pseudo-op. The .equ directive is also available to use in the .text section.

Another commonly used directive is .include, which enables another file
to be directly inserted at the point of the directive, e.g.,

.include "header.h"

will insert the contents of the file header.h at the current point in the assembly
language source.

11.4.4 Macros

With the .macro directive, it is possible to declare macros that can do fairly
sophisticated symbolic processing at assembly time. We will not describe the
general technique for declaring macros; however, we will illustrate the use of
two very useful macros that are built-in to the assembler.

When using an 8-bit processor, it is common to manipulate 16-bit values
(e.g., addresses) one byte at a time. The assembler provides two macros that
are useful in this process, i.e,

lo8(value)

takes a 16-bit value and returns the least significant 8 bits, while

hi8(value)

takes a 16-bit value and returns the most significant 8 bits. These macros
can be very useful in address manipulation, especially for array indexing.

For example, if we wish to load the address of array1 into the X index
register (recall X is a name for the register pair r27:r26), we can use the
following instruction sequence:

ldi r26,lo8(array1)

ldi r27,hi8(array1)

ld r2,X

which loads the value stored at address array1 into register r2.

140

11.5. Authoring in Assembly Language

11.5 Authoring in Assembly Language

It is true that when authoring applications in assembly language, the program-
mer can do pretty much whatever he or she wants to do, given the only the
constraints of the instruction set. That approach, however, is rarely a good
idea. The conventions that have come in to common practice using high-level
languages (even simple things like if-then-else statements and while loops)
came into being for good reasons. Next, we will examine a number of those
conventions, and explore how to author assembly language application code
in such a way as to reap the benefits of those conventions.

11.5.1 Accessing Data

When accessing data in a high-level language like C or Java, the programmer
declares variables of a given type, and the compiler is responsible for assigning
storage locations for those variables. The programmer can then read the data
by simply referencing the appropriate variables in expressions.

In assembly language, things happen at a lower level of abstraction. What
is directly accessible to the assembly language programmer is the register set
and memory model of the AVR microcontroller. What data are to be stored
in registers vs. what data are to be stored in memory is the responsibility of
the programmer. In addition, each register is only 1 byte (8 bits) in size, and
each individual memory location is also only 1 byte wide. A C int is 2 bytes
(16 bits) in size, so it requires two registers or two memory locations.

Since the AVR is a load/store architecture, accesses to memory are all via
load or store instructions. Data manipulations, such as add, subtract, etc.,
read from registers and write their results to registers. As such, if we want to
add the contents of two memory locations, we must first load the data into
registers, perform the add operation, and then store the result to memory.

Consider the following code snippet:

lds r18,0x0200 ;M[0x0250] <- M[0x0200] + M[0x0210]

lds r19,0x0210

add r18,r19

sts 0x0250,r18

its purpose is indicated in the comment on the first line, add the contents of
memory location 0x0200 to the contents of memory location 0x0210 and store
the result in memory location 0x0250. It accomplishes this by loading the two
values into registers r18 and r19, adding r19 to r18 (leaving the result in r18)
and storing the result in memory location 0x0250.

141

11. Assembly Language

The above is an example of how an operation that only takes one line
of source code in a high-level language actually takes 4 assembly language
instructions to accomplish the same thing. And the above example only works
for single-byte data (e.g., a char in C). What about an int, or a long int?

Multi-byte Primitive Data Elements

There are two approaches commonly used to store multi-byte primitive data
elements in byte-sized locations. Either approach uses adjacent locations for
storage (e.g., if in the register set, use a pair of registers such as r16 and
r17 to store a two-byte value), they differ in which byte gets stored in which
location. The AVR microcontroller is what is called a little-endian machine.
What this means is that the low-order bits of the multi-byte value get stored
in the location with the smaller address or label. In our earlier example, if the
two-byte value 0x1f32 were being stored in the registers r16 and r17 (denoted
as register pair r17:r16), the low-order byte, 0x32, gets stored in r16 and the
high-order byte, 0x1f, gets stored in r17.

In the register set, we reference pairs of registers by listing them both (e.g.,
the r17:r16 example above). When talking about multi-byte values stored in
memory, the convention is to discuss the data value as if it were stored in one
address, even though it actually consumes more than one memory location.
So, a two-byte value that is referred to as being stored at location 0x02f4

actually consumes memory location 0x02f4 and location 0x02f5 (recall that
memory addresses are 16 bits long on the AVR microcontroller, it is the mem-
ory cells themselves that are 8 bits wide). Since it is a little-endian machine,
the low-order byte gets stored in location 0x02f4 and the high-order byte gets
stored in location 0x02f5.

The second approach (which is the opposite of a little-endian machine)
is a big-endian machine. In a big-endian machine, the high-order byte of
a multi-byte value is stored in the location with the smaller address. The
NXP ColdFire processors (originally developed by Motorola) are an example
of big-endian machines. The big-endian convention is also known as network
order, as the high-order byte of multi-byte values are typically sent first in
data communications (we will return to this issue in Chapter 12).

On our little-endian AVR microcontroller, if we wish to load a 16-bit value
from memory address 0x2f4 into the register pair r17:r16, the code would
be as follows:

lds r16,0x02f4

lds r17,0x02f5

142

11.5. Authoring in Assembly Language

and it takes two load instructions, one per byte. We can accomplish the same
goal in a slightly more general way by using one of the address registers:

ldi r26,0xf4 ;X <- 0x02f4

ldi r27,0x02

ld r16,X+ ;r17:r16 <- M[02f4]

ld r17,X

which has a number of things going on. First, we are using address register
X, which is actually the pair of registers r27:r26, so it must be initialized
to 0x02f4, which happens in the first two instructions. Second, take a look
at the comment associated with the first two instructions. See what it is
doing? It is telling us higher-level information than the literal statements in
assembly language. The instruction with the comment, and the instruction
immediately below it, serve the high-level purpose of storing the value 0x02f4

in the X address register. Third, the next instruction (after initializing the
address register) loads the low-order byte into r16. It uses the post-increment
addressing mode, so that after address register X has been used to access
memory, it is incremented by 1 (so it now has the correct value to access
the high-order byte of our two-byte data). Fourth, we finish by loading the
high-order byte from location 0x02f5 into register r17. Again, the comment
associated with the last two instructions describes the high-level intentions
of the programmer, specifically, to load the contents of memory at address
0x02f4 into the register pair r17:r16.

In addition to two-byte elements (such as int), we also want to occasionally
deal with four-byte elements (such as long int or float). The general rule
that applies to two-byte values extends just as one would expect for larger
values. The least significant byte is stored in the lowest memory address
and the most significant byte is stored in the highest address. Figure 11.1
illustrates the memory layout for both little-endian and big-endian machines.

Arrays

While the order in which the individual bytes of a primitive data type are
stored in memory depends upon whether a machine is little-endian or big-
endian, the order in which array elements are stored has no such dependency.
In C, array indices start at 0, and increment up. The memory locations used
to store array elements do exactly the same.

Consider the C string declared as follows:

char str[5] = "read";

143

11. Assembly Language

little-endian

8 bits

0x050E
0x050F

0x0600

0x0603

least sig.
most sig.

least sig.

big-endian

8 bits

2-byte
value

4-byte
value

most sig.

most sig.
least sig.

most sig.

least sig.

0x0601
0x0602

increasing
address

Figure 11.1: Two-byte and four-byte memory layout for little-endian and big-
endian machines. The 2-byte value is located at address 050e and the 4-byte
value is at address 0x0600.

Table 11.2: Memory layout of array str.

C reference Address Value

str[0] str + 0 ’r’

str[1] str + 1 ’e’

str[2] str + 2 ’a’

str[3] str + 3 ’d’

str[4] str + 4 ’\0’

it will have 5 array elements, and the memory layout will be as shown in
Table 11.2.

In assembly language, this array would be declared (in the data segment)
and initialized as follows:

.data

str: .asciz "read"

which essentially does close to the same thing as the C declaration above.
It allocates 5 bytes in memory, initializes those bytes to the characters in
the string "read" (including the terminating NULL character), and declares
the symbol str to refer to the address of the first element. The primary

144

11.5. Authoring in Assembly Language

difference is that C understands the type of str to be an array of chars,
while in assembly language, the symbol str merely represents the address of
the memory location, it has no type information.

If we want to write assembly language code to implement the following C
statement,

str[3] = ’l’;

which will edit the string from "read" to "real", we again use an address
register. This time we’ll use address register Z, just to be different.

The assembly language code is shown in Figure 11.2, in which the first
two instructions put the address of the array str into the address register
Z (taking advantage of the macros hi8() and lo8() described earlier in the
chapter), the third instruction changes Z to be the address of the 4th element
of str (by adding 3, remember that the first element is designated by index
0), the next to last instruction puts the ASCII code for the letter l into r16,
and the last instruction stores the letter into str[3].

ldi r30,lo8(str) ;Z <- &str[3]

ldi r31,hi8(str)

adiw r31:r30,3

ldi r16,’l’ ;r16 <- ’l’

st Z,r16 ;str[3] <- r16

Figure 11.2: Assembly language array access.

If the array is an array of multi-byte values (e.g., an array of ints), then
the order of elements in memory is the same (start at index 0 and increase);
however, each element now consumes more than one byte of storage. If, for
example, the elements are each two bytes, then the address increase for each
element must be two. The element itself is stored with its normal byte ordering
(least significant byte first for the AVR microcontroller).

Consider the 5-element integer array item, which would be declared in C
as follows:

int item[5];

and declared in assembly language as:

item: .space 10,0

145

11. Assembly Language

Table 11.3: Memory layout of item array.

C reference Address Contents

item[0]
item + 0 least significant byte of item[0]
item + 1 most significant byte of item[0]

item[1]
item + 2 least significant byte of item[1]
item + 3 most significant byte of item[1]

item[2]
item + 4 least significant byte of item[2]
item + 5 most significant byte of item[2]

item[3]
item + 6 least significant byte of item[3]
item + 7 most significant byte of item[3]

item[4]
item + 8 least significant byte of item[4]
item + 9 most significant byte of item[4]

each reserving 10 bytes of storage. The memory layout of the array is shown
in Table 11.3.

Accessing an individual element is pretty much the same as before, with
the added twist that we must account for the fact that each element is two
bytes long, and therefore consumes two addresses. Again using the Z ad-
dress register, we can read item[2] into register r17:r16 using the assembly
language code shown in Figure 11.3.

ldi r30,lo8(item) ;Z <- &item[2]

ldi r31,hi8(item)

adiw r31:r30,2

adiw r31:r30,2

ld r16,Z+ ;r17:r16 <- item[2]

ld r17,Z

Figure 11.3: Assembly language array access for 2-byte elements.

As before, we load the address of item into Z. Next, we add the index
offset, but we do it twice since we want 2 times the offset (since each element
is 2 bytes long). Finally, we read the array element (both bytes).

11.5.2 Control Flow Templates

There are many reasons people use high-level languages all the time, and the
ability to easily express control flow is but one of those reasons. However, it

146

11.5. Authoring in Assembly Language

is true that anything you can express in a high-level language, you can also
express in assembly language, it just takes more instructions to do so. We will
next consider how to implement several examples of control flow in assembly
language.

Control Flow: if-then

The most straightforward example of control flow in a high-level language is
the if-then statement. Consider the C code of Figure 11.4(a), where a, b,
and c are all assumed to be one-byte data types (e.g., char or byte). We can
write the same thing in assembly language as shown in Figure 11.4(b), where
we have made the arbitrary decision to use r16 to hold a, r17 to hold b, and
r18 to hold c. Also, the comments roughly indicate where, in the assembly
language code, the high-level language constructs are being implemented.

if (a == b) {

c++;

}

(a) C code.

lds r16,a ; if (a == b) {

lds r17,b

cp r16,r17

brne end_if

lds r18,c ; c++;

inc r18

sts c,r18

end_if: ; }

(b) Assembly language code.

Figure 11.4: Assembly language if-then.

There are a few things to note about this code. First, we used the cp

(ComPare) instruction to compare a and b (actually, we compare the values
that were initially in memory locations a and b, which are by now located
in registers r16 and r17). What the cp instruction does is subtract the two
values, but throws away the result, and only retains the conditions codes (the
bits of SREG). In our case, we are interested in the Z bit (the zero bit) of SREG,
because we want to test whether or not the two values are equal (in which case

147

11. Assembly Language

subtracting them gives a result of zero). After the cp instruction executes, we
have the convenient circumstance that if the two values are equal, the Z bit
is set (has the value 1), and if the two values are not equal, the Z bit is clear
(has the value 0).

Second, we use a conditional branch instruction, brne (BRanch if Not
Equal), that is actually the opposite of the if test in the C code. We branch
because we want to skip over the then clause and not execute it.

Third (and this is not required, but convention), the target of our condi-
tional branch, end if, is on a line by itself, rather than with code that follows
the if. This is simply to make it easier to edit the logic later, the end if label
will still point to the next assembly language instruction, even if it is not on
the line with the label itself.

As the above example illustrates, the general approach is the following
four steps.

1. Write code to test the conditional (if-clause), leaving the result of the
test in a place where a conditional branch instruction can evaluate it.

2. Use the conditional branch instruction that yields the negation of the
if-test, branching to a label at the end of the code snippet.

3. Write code that implements the then-clause.

4. Finish with the target label of the conditional branch instruction.

Remember that all labels in assembly language must be unique, so it is com-
mon to see assembly language programmers use labels that have numbers in
them, just to make them unique (e.g., end if12 if this was the 12th end if la-
bel he/she was creating). There is, of course, nothing magic about the end if

either, you also see fairly unimaginative labels like l12 often as well.

Control Flow: if-then-else

An only slightly more complicated construct is the if-then-else, which we
will consider next. Starting with the C code of Figure 11.5(a), a simple exten-
sion of the earlier example, the equivalent assembly language can be written
as shown in Figure 11.5(b), in which the first seven instructions are the same
as Figure 11.4(b), other than the fact that the destination of the conditional
branch instruction is the else label instead of the end if label. At the end of
the code for the then-clause, a jmp (JuMP) instruction sends us to the end if

label. As you would likely expect, the code for the else-clause follows the
else label.

148

11.5. Authoring in Assembly Language

if (a == b) {

c++;

}

else {

c--;

}

(a) C code.

lds r16,a ; if (a == b) {

lds r17,b

cp r16,r17

brne else

lds r18,c ; c++;

inc r18

sts c,r18

jmp end_if ; }

else: ; else {

lds r18,c ; c--;

dec r18

sts c,r18 ; }

end_if:

(b) Assembly language code.

Figure 11.5: Assembly language if-then-else.

Starting from the code above, one might recognize that a few changes are
possible which make it (1) a bit smaller, and (2) a bit harder to follow. Notice
that two instructions, the lds r18,c and the sts c,r18, are present in both
the then-clause and the else-clause. We can move the first one above the test
code and the second to the end of the code snippet to get the alternate code
shown in Figure 11.6, which is two instructions smaller, yet does the same
thing.

Note, though, that the comments don’t line up quite as well, associating
bits of assembly language with C. This code, while smaller, is a tad bit harder
to follow, logic-wise. Not much, but a little. These kinds of transformations,
moving loads forward and stores later, are commonly performed by compilers.

149

11. Assembly Language

lds r16,a ; if (a == b) {

lds r17,b

lds r18,c

cp r16,r17

brne else

inc r18 ; c++;

jmp end_if ; }

else: ; else {

dec r18 ; c--;

end_if:

sts c,r18 ; }

Figure 11.6: Alternative assembly language if-then-else.

Control Flow: while

For our example while, we will be a bit more generic and start with the C code
of Figure 11.7(a), where done is assumed to be a one-byte flag (e.g., of type
boolean) and the code inside the while eventually changes done from 0 to 1.

while (!done) {

// do something

}

(a) C code.

while:

lds r16,done ; while (!done) {

cpi r16,0

brne end_while

... ; // do something

jmp while

end_while: ; }

(b) Assembly language code.

Figure 11.7: Assembly language while.

Assembly language that does this can be written as illustrated in Fig-
ure 11.7(b), in which the while test is performed at the top, the body follows,

150

11.6. Interfacing with C

and at the bottom of the body there is an unconditional jmp back to the while
test. When the while test fails the code jumps to the end while label.

Control Flow: for

At this point we are going to stop giving explicit examples, and make a dif-
ferent point. A for loop can always be written in terms of a while loop, so if
we had the following C code:

for (i = 0; i < N; i++) {

// do something

}

a perfectly good way to author this in assembly language is to first transform
it into the equivalent while loop, as below:

i = 0;

while (i < N) {

// do something

i++;

}

and then convert to assembly language.

11.6 Interfacing with C

Frequently, we would like to write code that is partially in assembly language
and partially in C. The most straightforward way to do this is to author
assembly language routines and C routines separately. Then, as long as certain
conventions are followed when authoring the assembly language routines, C
routines can call assembly language routines and assembly language routines
can call C routines. The text below describes those conventions (i.e., what
you need to do as an assembly language programmer to ensure compatibility
with C).

11.6.1 Calling Conventions

When the C compiler translates C code into machine language, it has various
conventions that it follows, so as to ensure that C routines are compatible with
one another. As we write assembly language routines, as long as we follow
those conventions, our assembly language routines will then be compatible
with C.

151

11. Assembly Language

The primary three things we need to consider are: register usage, param-
eter passing, and function return values.

Register Usage

When authoring programs exclusively in assembly language, we can, for the
most part, use whatever registers we want for almost any purpose. Yes, we
have to follow the requirements of the instruction set, e.g., only certain register
pairs can be used as index registers for indirect addressing, but other than that,
register usage is up to the programmer.

This is no longer the case if we wish our assembly language code to be
compatible with C. When one C routine invokes another C routine, the call-
ing routine is known as the caller and the invoked routine is known as the
callee. Each routine has different responsibilities and obligations with respect
to register usage. The C compiler divides up the registers into three groups:
fixed registers, caller-save registers, and callee-save registers.

The fixed registers are r0 and r1. Register r0 is a temporary register that
can be used for intermediate results, but can be overwritten by C code, so
don’t assume it will retain its value if a C routine is called from assembly
language.

Register r1 is assumed to always be zero (0) by the C compiler (i.e., it is
set to 0 before setup() and then never written to after that). As a result,
anytime you wish to have handy access to the value 0, read from r1. Don’t
write to r1 unless you are writing 0 (and why you would want to do that, I
have know idea).

The caller-save registers are r18-27 and r30-r31. Caller-save essentially
means that if a routine is about to call another routine (i.e., it is the caller),
it cannot assume that these registers will retain their values. It is the respon-
sibility of the caller to save the value of the registers, somewhere other than
the register itself.

The most common place to save the contents of the registers is on the
system stack. For example, if the caller has important data that must be
retained in registers r26 and r27, they can be saved by pushing them onto
the stack using the push instruction and then invoking the called routine:

push r26 ; save r26 and r27 on the stack

push r27

call some_C_routine

pop r27 ; restore register values

pop r26

152

11.6. Interfacing with C

after which the register values can be restored from the stack using the pop

instruction. Note that since the stack operates in a “last-in, first-out” manner,
the registers must be restored in the opposite order that they were saved.

From the perspective of the called routine, it can change caller-saved reg-
isters at will, since it can be assured that the calling routine has saved their
values.

The callee-save registers are r2-17 and r28-r29. In this case, it is the
callee (the called routine) that must save the contents of any registers that it
uses, because the calling routine assumes they are not changed.

From the perspective of the calling routine, if it has data stored in callee-
saved registers, it can be assured that the called routine will save those values
and they will persist across the routine’s invocation.

Passing Parameters

When passing parameters, how the calling routine places arguments in reg-
isters depends upon the size of the arguments. Arguments are assigned to
registers starting with register pair r25:r24 for the first argument (assuming
it is either 8 bits or 16 bits in size), then register pair r23:r22 for the second
argument, etc., down to register pair r9:r8. Arguments that are 8 bits long
only use the even-numbered register of a register pair (e.g., r24, r22, etc.),
leaving the odd-numbered registers unused. Arguments that are 32 bits long
consume two consecutive register pairs (four consecutive registers), moving
subsequent arguments to lower-numbered registers.

Function Return Values

As with parameters, the mechanism for returning values from function calls
also depends upon the size of the return value. Table 11.4 indicates the regis-
ters used to provide function return values of various sizes. If the return value
is 8 bits long, register r25 is either zero-extended or sign-extended. Note that
all of the registers that are used for return values are all caller-save registers.
If the calling routine wishes to retain the value in those registers across the
function invocation, it must save the values prior to calling the function (which
is the callee in this case).

Now that we are following C conventions for register usage, parameter
passing, and function return values, we can call C routines from assembly
language as well as call assembly language routines from C. We will describe
each of these next.

153

11. Assembly Language

Table 11.4: Registers for function return values.

Return value data size Registers
(bits) (most sig. to least sig.)

8 r24

16 r25:r24

32 r25-r22

11.6.2 Calling C Routines from Assembly Language

When authoring code in assembly language, it is often the case that we would
like to invoke a routine in C (maybe one that already exists), so that we don’t
need to rewrite it in assembly. An example of this might be calling a routine
available in the C library, such as digitalWrite() or digitalRead().

Consider the assembly language code in Figure 11.8. It does the same
thing as the loop() code of Figure 2.1. While it uses registers r22 through
r25 to pass parameters to the C routines that it calls, it doesn’t save their
values (even though they are caller-save registers) because it doesn’t need
those values retained after the call to each C routine.

.global foo

foo: lds r24,doPin ; digitalWrite(doPin,HIGH)

lds r25,doPin+1

ldi r22,1

mov r23,r1

call digitalWrite

ldi r24,lo(500) ; delay(500)

ldi r25,hi(500)

call delay

lds r24,doPin ; digitalWrite(doPin,LOW)

lds r25,doPin+1

ldi r22,0

mov r23,r1

call digitalWrite

ldi r24,lo(500) ; delay(500)

ldi r25,hi(500)

call delay

ret

Figure 11.8: Calling C from assembly language.

154

http://www.arduino.cc/en/Reference/digitalWrite
http://www.arduino.cc/en/Reference/digitalRead

11.6. Interfacing with C

The C routines we called in this example didn’t return a value. However,
if they did, the return value would be in registers r25:r24 (for values of 16
bits or less).

11.6.3 Calling Assembly Language Routines from C

The assembly language routine of Figure 11.8 is already in appropriate form
so that we can call it directly from C. This is because: (1) we included the
pseudo-op .global to indicate that the label foo needs to be known to the
linker (part of the compiler), (2) we provided the label foo to indicate the
first instruction to execute, (3) we didn’t alter any callee-save registers, and
(4) we included a ret (RETurn) instruction at the end.

Figure 11.9 illustrates a sketch that essentially does the same thing as
Figure 2.1, only calling the assembly language routine foo() to do the work
within loop(). Note we require an extern statement at the top to inform the
linker that the routine foo() is found elsewhere (not in the same file as this
sketch).

extern "C" { // tell linker about foo()

void foo(void);

}

const int doPin = 17; // digital output pin is 17

void setup() {

pinMode(doPin, OUTPUT); // set pin to digital output

}

void loop() {

foo(); // call assembly language foo

}

Figure 11.9: Calling assembly language from C.

155

12 Computer to Computer
Communications

It has been said in the past that a “smart” device was one that was capable of
some level of computation. That definition is dated. Raj Jain, one of the early
developers of congestion control protocols for networks, describes a “smart”
device as one that is connected. Connected to other devices, connected to
the Internet, connected to the world. In this chapter, we will investigate
techniques for communicating between computers, both microcontrollers and
desktop computers. We’ll address byte stream concepts, as well as communi-
cation protocols that enable higher-level abstract communications.

One of the fundamental notions that has to be considered when dealing
with computer to computer communications is that each computer (whether
it be a simple microcontroller or a sophisticated desktop or server machine) is
executing its own program, and both programs are running at the same time.
In effect, there is concurrency present in the complete system.

This situation is different than everything we have seen so far. Up to this
point, an individual program was running on the microcontroller, and while
the actions that the computer takes are fast, only one thing is happening at
a time, and they have a strict ordering. This is no longer the case. When
two actions happen on distinct computers, it is entirely possible that we don’t
know (or can’t know) precisely which one happened first.

The presence of concurrency in the system often brings with it more com-
plicated reasoning about the correctness of the system as a whole. Here, we
will address these issues by constraining the scope of designs that we consider,
staying within the realm of operations that are relatively easy to reason about.
A word of caution, however, as arbitrary concurrent techniques can be very
difficult to understand.

In addition, communications between two different computers also encom-
passes the likelihood that the two computers are not just two copies of the

157

12. Computer to Computer Communications

same type of computer, but are in reality two different types of computer as
well. To help us understand and deal with these issues, in this chapter we will
assume that our Arduino microcontroller is communicating with a desktop
machine (or maybe a laptop machine) that is running a Java program. For
those unfamiliar with Java, Appendix A compares the Java language with the
Arduino C language.

12.1 Stream Concepts

We will organize our description of computer to computer communications
in terms of an abstract concept called a stream. A stream is an arbitrary
sequence of bytes, delivered from one computing entity to another. A stream
has a source, which generates the sequence of bytes to be delivered, and a
destination, which receives the sequence of bytes.

One of the advantages of the abstract concept of a stream is that one
can author code to serve as a stream source without knowing the stream
destination, and one can author code to serve as a stream destination without
having to know the stream source. This improves the composability of software
that uses the stream abstraction.

Abstract streams follow a few simple rules:

1. The data elements explicitly delivered via streams are bytes. Any other
data type must be built on top of the byte stream.

2. The data bytes are delivered in order. That is, if the source sends byte
A followed by byte B, the destination will receive byte A ahead of byte B.

3. Some streams guarantee reliable delivery. That is, if the source sends
byte A, the destination will eventually receive byte A. This is not always
the case, however, as some streams do not guarantee reliable delivery.
In this case, a byte sent by the source might or might not eventually be
received by the destination, or it might be delivered but have the wrong
value (e.g, one or more bits within the byte might have been altered).

The Serial class is an example of a stream on the microcontroller. We
have used Serial.print() and Serial.println() in a number of previous
chapters as a mechanism for writing output to the serial port that connects the
microcontroller to the IDE executing on a desktop machine. When running
the Serial Monitor in the IDE, code executing on the microcontroller is
serving as the stream source, and the Serial Monitor is serving as the stream
destination.

158

http://www.arduino.cc/en/Reference/Serial
http://www.arduino.cc/en/Reference/Serial.print
http://www.arduino.cc/en/Reference/Serial.println

12.2. Delivery of Streams

12.2 Delivery of Streams

One of the benefits of the stream abstraction is that the endpoints of a stream
do not need to know about one another (i.e, the source’s implementation is
independent of the destination and the destination’s implementation is in-
dependent of the source). In a similar way, another benefit is that neither
endpoint needs to be aware of the physical mechanism used to deliver the
bytes from source to destination.

Possible delivery mechanisms include copying bytes in the memory of a
processor (e.g., from one program to another), sending bytes over a local area
network (LAN) or the Internet, delivering bytes wirelessly, using a serial port
implemented on top of a USB link, or a host of other paths.

We will discuss a number of these delivery mechanisms in turn, next.

12.2.1 Internet

The Internet is composed of a vast number of links, switches, protocols, con-
ventions, and mystery (especially to those who have not studied its design
and implementation). For our purposes here, however, we don’t need to know
hardly anything about the mechanisms used to deliver data either across the
room, across the continent, or around the world. By embracing the stream
abstraction, we can take advantage of the infrastructure (both hardware and
software) that the Internet provides without any obligation to comprehend
how it was constructed.

When a stream is setup between two endpoints (and yes, this does require
some setup, but like all of our other examples, the heavy lifting will be done
by library code provided to us), bytes that are sent by one endpoint will be
delivered, in order, to the other endpoint. This sending and receiving of bytes
works in both directions.

12.2.2 Serial Ports

The most commonly used stream in the Arduino world is the serial connection
between the Arduino and the host laptop or desktop computer used to develop
sketches. It is a USB (or Universal Serial Bus) link that, with appropriate
drivers on the host, appears as a serial port to the software on either end of
the USB cable.

This physical link is used for a pair of purposes. First, it is used to down-
load software from the IDE running on the host into program memory on the

159

12. Computer to Computer Communications

Arduino. Second, it is used to communicate (under software control) between
the Arduino microcontroller and the host.

12.2.3 Other Streams

One of the really nice things about the stream abstraction is that it can be
used in any number of circumstances. For example, one can consider the file
system to be a stream. The sender (writing to the file system) is delivering
data to the stream at one time, and the receiver (reading from the file system)
is retrieving data from the stream at a later time.

This abstraction isn’t perfect, obviously, as it is possible in a file system to
do random reads. However, for the most typical file system accesses, it works
just fine.

12.3 Protocols

If Bob and Alice are near one another (within earshot) and Bob says, ”Knock,
knock!”, we can be very confident in what Alice will reply. Throughout the
English-speaking world, Alice will say, ”Who’s there?” After this initial inter-
action, Bob will continue telling one of an unknowable number of knock knock
jokes.

OK, from the point of view of computer communications, what is happen-
ing here? Our contention is that both the joke teller and the joke recipient are
conforming to a protocol , an agreement between the two parties that guides
their interaction.

In the context of a stream that connects two computers, the protocol
describes the agreement between the two parties to the communication as to
how they are to interact with one another. Whose turn is it to transmit?
Can they both transmit simultaneously? How does the recipient interpret the
sequence of bytes it receives? Below, we will describe an example protocol
that enables the communication of a number of different quantities between
one computer and another.

12.3.1 Byte Delivery

The stream abstraction describe above essentially provides a sequence of in-
dividual bytes, reliably delivered, in order, from the source to the destination.
In some circumstances, reliability of the byte delivery is not assured, and it is
the responsibility of the higher-level protocol to deal with that issue.

160

12.3. Protocols

In what follows, we will take a middle ground position on reliability, and
assume that a byte sent by the source might or might not make it to the
destination, but dropped bytes (as they are called) are relatively infrequent.
We will also assume that any bytes that do get delivered are correct (i.e., not
altered in transit).

In Sections 12.4 and 12.5 below, we discuss the mechanisms available to
send and receive individual bytes.

12.3.2 Delivering Larger Data Items

Clearly, if we have the ability to send and/or receive individual bytes, to
deliver larger data items it is necessary to use more than one byte for each
larger data item. It is also important that both the source and the destination
use the same convention for sending and receiving multi-byte data items.

Integers and Other Primitive Types

The convention for sending primitive types (integers, floats, and the like) is
to send the bytes in order from most significant byte to least significant byte.
This convention is sometimes referred to as “network order.” Always sending
in network order ensures that the endpoints (either sender or receiver) don’t
need to know the endianness of the other endpoint.

This convention, however, does not address the need for both endpoints to
know the size of the primitive data type. For example, an integer data type
on the Arduino platform is 2 bytes, while a Java integer is 4 bytes.

Arrays of primitive types are typically ordered from the lowest index to
the highest index. As with the primitive data types, this doesn’t help the
endpoints know the length of the array, which must therefore be communicated
via some other mechanism.

Strings

Strings are data types that are frequently represented in noticeably different
ways on different machines. For example, a string in C is stored as an array of
chars with a null termination (i.e., the string’s length is represented by a ’\0’,
or null character, after the last valid character of the string. Each character
in the string therefore occupies one byte of space (plus the additional byte to
store the null termination).

In contrast, a string is Java is stored within a String object. In the
standard implementation, the String class implements the underlying rep-
resentation of the string as an array of characters, char[], plus a separate

161

12. Computer to Computer Communications

instance variable that retains the length of the array. Null termination is
not used. Also, in Java, the char data type is 2 bytes long (using UTF-16
encoding of characters).

Given that different languages use different conventions for internal repre-
sentations of strings, when one wishes to communicate a string from one com-
puter to another it is insufficient to simply send the bytes using the sender’s
internal representation and expect the receiver to interpret them correctly.
What is needed is an encoding of the string that is agnostic to the type of
computer or language used by the sender and the receiver.

As described in Chapter 8, UTF-8 is a variable length character encod-
ing mechanism that is widely used on the web. As such, it is well defined
how to encode C strings and Java strings into UTF-8. A reasonable string
communication protocol could then have the following form. First, the initial
two bytes represent a 16-bit value (in network order, high-order byte first and
low-order byte second) that describes the length of the string (in bytes). Next,
this is followed by the UTF-8 encoded code units (bytes) that represent the
individual characters of the string.

12.3.3 Messages

It is quite common to have a circumstance where more than one thing is to be
communicated between two endpoints. For example, a microcontroller might
be measuring temperature and pressure, and it wishes to send both values
(possibly including a timestamp of when the measurements were taken) to
a desktop computer. To accomplish this, we frequently will encapsulate the
information to be delivered into one or more messages.

A message protocol that has been agreed to by both endpoints allows a
range of capabilities that are, at the very least, more difficult without mes-
saging.

1. Recovery from transmission errors.

2. Delivery of distinct data elements (e.g., temperature, pressure, time).

3. Delivery of distinct data types (e.g., integer, float).

In the discussion below, we will cover how to address each of the above
capabilities in a message protocol.

162

12.3. Protocols

Magic Numbers

Consider the following circumstance. A source is sending a series of 2-byte
integer values, high byte first and low byte second, and at some point during
the delivery process, the high byte of one value is lost. (Recall that our
reliability assumption is that occasionally a byte that is sent isn’t received.)

What happens in the above circumstance? All of the integers that follow
will be erroneously received by the destination. Low bytes of one integer are
paired with high bytes of the following integer, and none of it is correct.

In a message protocol, one of the things we would like to accomplish is
to recover from errors like the one above, and while some data might be
irrevocably lost, at the very least we get the source and destination back in
sync with one another so that correct information delivery can resume.

One of the ways we do this is to encapsulate any information we send in a
message. A message will have header information that facilitates the delivery
of the entire message (the header is typically independent of the content of
the message), and payload information that is the data to be communicated
from sender to receiver.

An element that is included in the header of many messaging protocols
is a magic number . A magic number is a fixed byte pattern that is always
present at the beginning of a message and is used to signify to the receiver
that this is the beginning of a message.

While often the magic number is multiple bytes long (4 bytes is a common
size), let us consider the use of a single-byte magic number, for example, 0x21.
When the sender is preparing a message for delivery, it starts the first byte
of the message with the byte 0x21. When the receiver is reading individual
bytes from the stream, it can expect that the first byte of any message has
the value 0x21. If not, it knows that the byte that it has just read is not the
beginning of a message, and an appropriate response would be to discard all
incoming bytes until it does see a 0x21.

A good choice of a magic number is a byte pattern than is relatively
unlikely to appear anywhere else in the message. While this is impossible
to guarantee in general (e.g., encrypted data can have any value), making
the magic number infrequent improves the odds that the receiver’s actions in
the above paragraph result in erroneously trying to start reading a message
while actually still within the body of some other message. Clearly, the use
of multiple-byte magic numbers can help this somewhat.

Magic numbers are not constrained to messaging protocols at all. One
common use is in files, helping to identify the type of data stored in a file. For
example, the first four bytes of a PDF document are 0x25, 0x50, 0x44, and

163

12. Computer to Computer Communications

0x46, which are the ASCII encoding of the characters %PDF.

Fields

If we have defined the header of our messages (in the case we just described
above, the magic number is the only thing in the header, other protocols might
specify additional information) it is now time to specify how the data elements
are to be delivered. We need to describe the payload .

A common approach to data delivery is to not just send the data element
itself, but also include additional descriptive information so that the receiver
can more readily understand what the data represent. For example, what is
the data type: two-byte integer vs. four-byte floating point value vs. string?
Or, what is the meaning of the data, temperature reading, pressure reading,
or timestamp?

Here, we suggest using a payload convention that goes by several names:
key-value pair , name-value pair , tag-value pair , or sometimes attribute-value
pair . Just to keep things simple, we will use the key-value pair terminology,
but don’t be surprised if you see any of the above terms used elsewhere.

The basic idea is that each data element is communicated as an ordered
pair, a key followed by a value. In our example protocol, the key indicates
both the data type and the meaning of the value that follows it (e.g., the value
is a four-byte integer that represents a timestamp, the number of milliseconds
that has elapsed since the source program was started).

What is required then is that a list of keys (and what they represent) must
be known both at the sending and receiving end of the communication. I.e.,
they must be listed explicitly as part of the protocol.

12.4 Sending Messages: Composition

Given that the source of a message knows the content prior to the actual
composition and sending of the message, this task is actually fairly straight-
forward.

The low-level requirements include how does one send a single byte to the
stream. In the Arduino libraries, the Serial class supports the delivery of an
individual byte via the Serial.write() method.

In Java, the delivery of an individual byte depends upon which library is
being used. If using the JSSC library, which is the one used by the Arduino
IDE when communicating between the host computer and the microcontroller,
the SerialPort class has a writeByte() method.

164

http://www.arduino.cc/en/Reference/Serial
http://www.arduino.cc/en/Reference/Serial.write

12.4. Sending Messages: Composition

In the example that is included below, we will use the generic sendByte()

syntax, with the understanding that it gets replaced in the actual code with
one of the above options.

Once we have the ability to send individual bytes, there are two possible
designs for message delivery. Design 1 is to formulate (compose) the message
is memory (in an array of bytes) and then send the individual bytes out the
data stream. Design 2 is to send bytes out the data stream as the message is
being formulated (composed). Either design works just fine. In the example
below, we’ll use design 1.

Consider the task of sending a message that contains a timestamp value.
Assume that the key for timestamp is 0x74 and the timestamp value is a
4-byte integer (e.g., the return value from millis()). If the byte array we are
using to compose the message is named msg, the first two things to include
in the message are the magic number and the key. This might look like the
following:

msg[0] = 0x24;

msg[1] = 0x74;

or if the appropriate constants have been defined:

msg[0] = MAGIC_NUMBER;

msg[1] = TIMESTAMP_KEY;

The next four bytes of the message should contain the timestamp value. If that
value is in the unsigned long int time, the logic to compose the message
value is:

msg[2] = (time >> 24) & 0xff; // most significant byte

msg[3] = (time >> 16) & 0xff;

msg[4] = (time >> 8) & 0xff;

msg[5] = time & 0xff; // least significant byte

What the above code does is to shift the appropriate 8 bits into the least
significant byte and mask off any higher-order bits.

And the last task is to send the message to the stream:

int msgLength = 6;

for (i=0; i<msgLength; i++) {

sendByte(msg[i]);

}

which is accomplished by looping over the msg array.

165

http://www.arduino.cc/en/Reference/millis

12. Computer to Computer Communications

12.5 Receiving Messages: Parsing

The challenge in receiving messages is that the receiver doesn’t know what
message is coming next, and therefore the code to receive messages must
recognize any legal messages. It is fairly straightforward to do this using a
finite-state machine (FSM), and the diagram for such an FSM is illustrated
in Figure 12.1.

In the protocol that this FSM recognizes, there are two message keys:
0x74 (with a 4-byte value representing a timestamp) and 0x54 (with a 2-byte
value representing an integer temperature in degrees C). In the diagram, an
edge is traversed upon the receipt of a byte. If that edge is labeled, the value
of the incoming byte must match the label, otherwise the FSM traverses the
unlabeled edge. While actions (other than state transitions) are not shown on
the diagram, assume that the edges departing states C to H store the received
byte into the appropriately named variable: first, second, third, or fourth
(each of type byte).

State Meaning

A Waiting for magic number (initial state)
B Waiting for key
C Waiting for first byte of 0x74 msg value
D Waiting for second byte of 0x74 msg value
E Waiting for third byte of 0x74 msg value
F Waiting for fourth byte of 0x74 msg value
G Waiting for first byte of 0x54 msg value
H Waiting for second byte of 0x54 msg value

Figure 12.1: Receiver finite-state machine.

166

12.5. Receiving Messages: Parsing

When traversing the outbound edge from state F, the FSM will store the
received timestamp into a 4-byte long integer (if on the microcontroller):

unsigned long int timestamp = (first << 24) | (second << 16)

| (third << 8) | fourth;

and when traversing the outbound edge from state H, the FSM will store the
received timestamp into a 2-byte integer:

unsigned int temperature = (first << 8) | second;

To implement the FSM described above, one still needs the capability of
receiving individual bytes. Again, this will be different in C on the microcon-
troller versus in Java on a desktop machine. In Arduino C, the Serial.available()
method returns the number of bytes that are available to be read from the
serial port, and the Serial.read() method returns the first byte in the input
buffer. As a result, a code structure like the following

void loop() {

if (Serial.available() > 0) {

byte inputByte = Serial.read();

switch (FSMstate) { // code to implement FSM

case A:

...

}

}

}

will put each received byte into inputByte and then implement one transition
(one step) of the finite-state machine (whose state is retained in FSMstate).

167

http://www.arduino.cc/en/Reference/Serial.available
http://www.arduino.cc/en/Reference/Serial.read

13 Conclusions

NOTE: This chapter has not yet been written.

169

A Languages

In this appendix, we will make targeted comparisons between what are es-
sentially three languages. Under the assumption that many readers have ex-
perience with Java, we will compare Java with standard C (a language that
predates Java by several decades, and is used quite frequently in embedded
computer systems). The version of C used throughout the book, however, is a
subset of the standard C language. We refer to it as Arduino C, and after the
comparison between Java and C we will compare standard C with Arduino C.

In both cases, the intent of the comparison is not to fully describe the
similarities and differences between the language definitions. Rather, we are
interested in helping the reader navigate the distinctions they are likely to
run into if they are initially familiar with the first language and are just
being introduced to the second language. The examples given are just that,
examples, not intended to elucidate every corner case or potential difference.

A.1 Java vs. C

Java is a language that is frequently used in introductory courses that teach
computer programming. As such, we anticipate that many readers of this
book will be familiar with it, and since Java derives many of its syntactic
conventions from C, this makes the task of learning C substantially easier for
those who are familiar with Java. In the paragraphs below, we will attempt
to answer the question, ”What does a programmer familiar with Java need to
know to become reasonably functional in C?”

Probably the most important thing to know that differentiates Java and
C is the fact that Java is an object-oriented language, while C is not. C was
developed long before object-oriented programming was in vogue and does
not support objects, per se. It is a procedural language. We will discuss this
distinction a bit more below, however, we will start our comparison of the two
languages with things for which they are more similar than different.

171

A. Languages

A.1.1 Basic Syntax

The look and feel of individual statements in Java and C are remarkably
similar. This is not an accident, but derives from the fact that this was an
intentional decision by the developers of Java (the newer of the two languages).

As such, the following things are essentially unchanged between the two
languages:

• Identifiers use the same rules, e.g., they are case sensitive.

• Individual statements are terminated with a semi-colon, ‘;’.

• Scope is delineated using curly braces, ‘{’ and ‘}’.

• Function calls look the same, e.g., function(param1, param2).

• Comments are denoted in the same way, i.e., using ‘/*’ with ‘*/’ or ‘//’.

• Many unary and binary operators are the same, e.g., +, -, *, /, &&, ||,
!, &, |, ~, ^, <=, >=, and ==.

One minor distinction is that the right shift operator, ‘>>’, is a signed operation
in Java, while in C it follows the type (signed vs. unsigned) of the value to be
shifted. An unsigned right shift in Java is denoted by ‘>>>’.

The code snippet below could legitimately be in either Java or C:

int a = 0;

int b = 100;

while (a < b) {

for (int i=0; i<20; i++) {

if (a > i) {

a++;

}

else {

b--;

}

}

}

While it doesn’t really do anything interesting, one cannot tell simply by
reading it which language it represents. It could be either.

172

A.1. Java vs. C

A.1.2 Primitive Data Types

Java has the following primitive types: byte, char, short, int, long, float,
double, and boolean. Other than char or boolean, all of the types are
considered signed, in that they can store both positive and negative values.
The storage requirements (size) for each of these types is specified by the
language.

C has the following primitive types: char, unsigned char, short int,
unsigned short int, int, unsigned int, long int, unsigned long int,
float, double, and long double. Note, the type unsigned is a synonym for
unsigned int, short is a synonym for short int, and long is a synonym for
long int. In C, the storage requirements for each type is compiler-dependent,
with the language specifying a minimum size.

Table A.1 shows sizes for a number of the primitive data types. The Java
column has the actual size while the C column shows the size that is commonly
used by modern compilers. Note, these typical sizes for C types are for desktop
and server systems. We will revisit the size of data types in Arduino C below.

Table A.1: Sizes of some primitive data types in Java and C.

Data Type Java Size Typical C Size Range (of integers)

byte 1 byte N/A
char 2 bytes 1 byte

unsigned char N/A 1 byte
short 2 bytes 2 bytes −215 to 215 − 1

unsigned short N/A 2 bytes 0 to 216 − 1
int 4 bytes 4 bytes −231 to 231 − 1

unsigned N/A 4 bytes 0 to 232 − 1
long 8 bytes 8 bytes −263 to 263 − 1

unsigned long N/A 8 bytes 0 to 264 − 1
float 4 bytes 4 bytes
double 8 bytes 8 bytes

The first observation we will make is that for the most part, the size of
Java types matches the size of C types. This is true for the 2-byte integers
(shorts), 4-byte integers (ints), and 8-byte integers (longs). The second
observation is that for a single-byte data type, Java uses the byte type and
C uses the unsigned char type. It is common in C environments for a lo-
cal definition (typedef in C) to declare a byte type that is the same as an
unsigned char, further unifying the commonly used primitive types. Finally,
our third observation is that the data type for characters is distinctly different

173

A. Languages

in the two languages. Java stores individual characters as 2-byte values using
the UTF-16 character set in its char data type, while C stores characters as
single-byte values using the ASCII subset of the UTF-8 character set in its
char data type.

A.1.3 Strings

The two languages not only differ in how they store characters (i.e., the char

data type), they also differ in how they store strings.

In Java, strings are managed by the String class, and objects of the String
class are immutable (i.e., they cannot be altered once created). The String

class supports a number of methods that are quite useful, such as querying the
length of a string via the String length() method. While not required by
the language definition, the common implementation is for each String object
to retain the characters of the string in an array of chars and the length of
the string in a separate instance variable. These details are, of course, hidden
from the programmer by the interface to the String class.

In C, strings are stored in an array of C chars, with the array size required
to be at least one element larger than the length of the string. The end
of the string is denoted by the NULL character (0x00, ’\0’), in the array
position immediately after the final character of the string. As a result of this
convention, strings in C are mutable, or alterable, simply by manipulating
the individual elements of the array. In addition, this convention for storing
strings, an array of chars that is NULL terminated, is totally exposed to the
programmer and is not hidden behind an opaque interface.

A.1.4 Arrays

Arrays in Java and C are similar in some ways, but noticeably different in
others. Pay attention to the following things with Java and C arrays:

• The syntax for array references is the same, e.g., a[3] refers to the fourth
element of the array a, with indexing starting at 0 in both languages.

• The declarations and allocations differ some, e.g., a length 10 array of
integers named a can be declared via

int[] a = new int[10];

in Java and
int a[10];

in C.

174

A.1. Java vs. C

• An array in Java is an object, so there are a number of methods that can
be invoked on it, e.g., a.toString() returns a String representation of
the array a.

A.1.5 Heterogeneous Data Structures and Objects

Once one has some experience using arrays, which support a number of data
elements that have the same type, the next natural thing one might like to
declare is a data structure that can hold more than one data type. In Java,
we can do this using objects, each of which can contain a number of instance
variables, all of different types.

While Java object are much more than just a heterogeneous data structure
(e.g., they also can contain methods), our interest here is just in their data
retention capabilities.

C, on the other hand, does not support objects at all. It does, however,
use a different mechanism for declaring data structures that are heterogeneous
in nature, called a structure. An example structure definition is shown below,
using the keyword struct to define a structure with the name alpha.

struct alpha {

int k;

float x;

};

Subsequently, one can then declare a variable alf whose type is the structure
alpha:

struct alpha alf;

and access fields within the structure as follows.

alf.k = 2;

alf.x = 3.14159;

If it helps your understanding, it is quite reasonable to think of a struct

as just an object with instance variables but no methods.

A.1.6 Memory Management

A clear difference between Java and C is the way that dynamic memory man-
agement is handled. In Java, the bulk of the memory management responsi-
bilities are with the language infrastructure. Programmers can request new

175

A. Languages

objects, which are allocated in memory, they are not responsible for managing
pointers to those objects, and the system handles the reclaiming of memory
once the program is finished with it.

In C, almost all of the above is different. Programmers are explicitly
responsible for allocated memory, which must be freed by the programmer
when no longer needed. Pointer data types are explicitly supported in the
language to facilitate direct manipulation of the memory subsystem.

In most small embedded systems like the Arduino, the use of dynamic
memory is either disallowed or discouraged, so while this is a subject of major
differences between Java and C as a language, it is not an issue that will be
substantial for readers of this book.

A.1.7 Other Minutiae

There are, of course, a host of other differences between Java and C, some in
philosophy, others just in minor semantic variation. One example of this is
the fact that, by default, Java will initialize all variables at their declaration,
while C will not. As a result, the declarations below:

int abc = 0;

int xyz;

will not have the same impact in Java vs. C. In Java, both abc and xyz will
start out with the value 0. In C, however, abc will have the value 0, but xyz

will be indeterminate.

Another important distinction between Java and C is that the logistics
of printing is different in each language. Since Arduino C actually differs
fairly significantly from standard C in this respect, we omit a discussion of a
comparison between Java and C and below discuss the logistics of printing in
standard C and Arduino C in the section below.

A.2 C vs. Arduino C

As stated earlier, the C language supported by the Arduino platform has some
distinctions that separate it from standard C. Here, we will highlight those
differences, so that the reader that is familiar with the C language won’t be
tripped up by Arduino C.

176

A.2. C vs. Arduino C

A.2.1 Primitive Data Types

As mentioned above, the size of primitive data types in C is compiler-dependent.
Table A.2 gives the size of commonly used data types that are supported by
the Arduino compiler.

Table A.2: Sizes of primitive data types in Arduino C.

Data Type Arduino C Size

bool 1 byte
byte 1 byte
char 1 byte

unsigned char 1 byte
int 2 bytes

unsigned 2 bytes
long 4 bytes

unsigned long 4 bytes
float 4 bytes
double 4 bytes

There are a number of things to note here:

• The bool data type has an alias, boolean, and supports the constants
true and false. When evaluating a logical test, the value 0 is inter-
preted as FALSE and any non-zero value is interpreted as TRUE. (This
last point is valid for standard C as well.)

• The byte data type is actually the same as unsigned char.

• The int and unsigned data types are smaller than is typical for desktop
or server machines. This limits the range of int to −215 to 215 − 1, or
−32, 768 to 32, 767, and the range of unsigned to 0 to 216 − 1, or 0 to
65, 535.

• The float and double data types are equivalent to one another (i.e.,
they are the same size). This is never the case in desktop or server
machines, but is not unusual in small microcontrollers.

A.2.2 Objects

We’ve stated several times that C is not an object-oriented language. However,
the compiler used with the Arduino platform is, technically, not just a C

177

A. Languages

compiler but is a C/C++ compiler. As such, it supports a number of C++
features, including classes and objects.

The declaration and implementation of classes is beyond the scope of this
appendix. However, there are a number of commonly used classes that are
available as libraries and can be invoked from Arduino C sketches. The two
most commonly used classes are the following:

• String – The String class is an alternative approach to storing strings.
Objects of the String class support methods such as concat(), which
enables concatenation of two strings, and length(), which returns the
number of characters in an object of type String.

• Serial – The Serial class is used to support communication between
the Arduino microcontroller and other computers. It is the primary
vehicle to support printing on the Arduino and gets used extensively.

A.2.3 Printing

Likely the largest difference that the typically programmer will see is the print-
ing support provided. In Arduino C, the printing of strings is supported via
the Serial.print() function within the Serial class. In standard C, the
formatting of output is handled primarily by printf() (with similar func-
tionality provided by sprintf() and fprintf() for printing to strings and
files, respectively).

Serial.print() supports the printing of all of the data types shown in
Table A.2 in addition to strings (both String objects and NULL-terminated
arrays of type char). An optional second parameter specifies the base to be
used for formatting the value. Valid bases include BIN for binary, OCT for
octal, DEC for decimal, or HEX for hexadecimal. If the first argument is a
floating-point value, the optional second parameter specifies the number of
fractional digits to print after the decimal point.

178

http://www.arduino.cc/en/Reference/String
http://www.arduino.cc/en/Reference/Serial
http://www.arduino.cc/en/Reference/Serial.print
http://www.arduino.cc/en/Reference/Serial.print

B Simple Introduction to Electricity

NOTE: This appendix has not yet been written.

179

C Base Conversions

When converting from one number base to another number base, the primary
consideration is which base does one wish to use for the mathematical opera-
tions. In what follows, we will convert numbers from base A to base B using
base B math, and then will convert from base A to base B using base A math.
In both cases the math will be in decimal (i.e., in the first section, base B is
decimal and in the second section base A is decimal).

C.1 Convert Base A to Base B using Base B Math

When the destination base of the conversion is the same as the base used to
perform arithmetic, the conversion is essentially an application of the basic
definitions of the positional number system. Given the 3-digit number denoted
uvwa in base a, where u is the 1st digit, v is the 2nd digit, and w is the 3rd
digit, the conversion to base 10 (using base 10 arithmetic) is as follows:

uvwa = u · a2 + v · a1 + w · a0

= u · a2 + v · a+ w.

It is important when performing the operations above that the individual
digits u, v, and w, as well as the base a, are all represented on the right-hand
side of the equation using their decimal equivalents. This enables the decimal
math to function. Notationally, the base is a on the left-hand side of the
equation and the base is 10 on the right-hand side.

As a first example, we will convert the hexadecimal value 0x3e1 into deci-
mal. Putting this in terms of the symbols above, u = 3, v = e16 = 1410, and
w = 1. Converting 0x3e1 from hexadecimal to decimal (base 16 to base 10)

181

C. Base Conversions

using decimal arithmetic then proceeds as follows:

3e116 = 3 · 256 + 14 · 16 + 1

= 768 + 224 + 1

= 99310.

In a second example, we will generalize beyond the 3-digit numbers above,
and convert an 8-bit binary value (base 2) into decimal. As the number of
digits in the initial number increases, we simply generalize the equation above
to use increasing powers of the input base a. Take the value 100101012, which
has 8 binary digits (or bits). It is converted into decimal as shown below:

100101012 = 1 · 27 + 0 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 1 · 128 + 0 · 64 + 0 · 32 + 1 · 16 + 0 · 8 + 1 · 4 + 0 · 2 + 1

= 128 + 16 + 4 + 1

= 14910.

There is one wrinkle that must be considered when converting from binary
numbers into decimal. In the above example, we treated the binary value as an
unsigned number. If, instead, the 8-bit binary number is to be interpreted as a
two’s complement signed value, the weight associated with the most significant
bit position is no longer 27, but is instead −27. In this case, the conversion
proceeds as shown below:

100101012 = 1 · −27 + 0 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 1 · −128 + 0 · 64 + 0 · 32 + 1 · 16 + 0 · 8 + 1 · 4 + 0 · 2 + 1

= −128 + 16 + 4 + 1

= −10710.

Note that there is no information present in the original binary number,
10010101, that indicates whether it is to be interpreted as an unsigned or a
signed value. The interpretation must be communicated separately from the
number itself. Indeed, the same bit pattern can be interpreted either way, and
as we see above, each interpretation yields a different decimal value.

C.2 Convert Base A to Base B using Base A Math

When the mathematical manipulations are being performed in the destina-
tion base, the required operations are fairly straightforward, requiring just

182

C.2. Convert Base A to Base B using Base A Math

the insertions of the appropriate values into the conversion formula and then
execution of some multiplication and addition. The situation is not quite as
straightforward when the mathematical operations are to be performed in the
origin base.

The following technique is characterized by repeated division operations.
In the description that follows, we will assume that base A is 10 (the base in
which we are performing our mathematical manipulations) and base B is rep-
resented by b. The procedure repeatedly performs integer division, retaining
both the quotient, q, and the remainder, r. The resulting value (in base B)
is constructed one digit at a time, starting with the least significant digit and
proceeding towards the most significant digit.

1. temp ← value to be converted

result ← empty

2. perform integer division temp/b resulting in quotient q and remainder r

3. prepend r (as an individual digit in base B) to the front of result (i.e.,
r is the new most significant digit of result)

4. temp ← q

5. if q 6= 0 then return to step 2

As an initial example, we will reverse the initial base conversion we did
at the beginning, converting 99310 into hexadecimal (base 16). The labels on
each line below refer to the specific step being performed in the algorithm
above. Values in base 10 will not have the base explicitly shown, and values
in base 16 will be denoted via a subscript 16.

(1) temp = 993 and result is empty

(2) divide 993/16, which gives quotient q = 62 and remainder r = 1 = 116

(3) result = 116

(4) temp = 62

(5) q = 62, return to step 2

(2) divide 62/16, which gives q = 3 and r = 14 = e16

(3) result = e116

183

C. Base Conversions

(4) temp = 3

(5) q = 3, return to step 2

(2) divide 3/16, which gives q = 0 and r = 3 = 316

(3) result = 3e116

(4) temp = 0

(5) q = 0, finished

At the end of the above procedure, result is 3e116, which is what we expect.
As a second example, we will convert 13410 into binary. The sequence of

steps is as follows:

(1) temp = 134 and result is empty

(2) divide 134/2, which gives quotient q = 67 and remainder r = 0

(3) result = 02

(4) temp = 67

(5) q = 67, return to step 2

(2) divide 67/2, which gives q = 33 and r = 1

(3) result = 102

(4) temp = 33

(5) q = 33, return to step 2

(2) divide 33/2, which gives q = 16 and r = 1

(3) result = 1102

(4) temp = 16

(5) q = 16, return to step 2

(2) divide 16/2, which gives q = 8 and r = 0

(3) result = 01102

(4) temp = 8

184

C.2. Convert Base A to Base B using Base A Math

(5) q = 8, return to step 2

(2) divide 8/2, which gives q = 4 and r = 0

(3) result = 001102

(4) temp = 4

(5) q = 4, return to step 2

(2) divide 4/2, which gives q = 2 and r = 0

(3) result = 0001102

(4) temp = 2

(5) q = 2, return to step 2

(2) divide 2/2, which gives q = 1 and r = 0

(3) result = 00001102

(4) temp = 1

(5) q = 1, return to step 2

(2) divide 1/2, which gives q = 0 and r = 1

(3) result = 100001102

(4) temp = 0

(5) q = 0, finished

which gives result = 100001102. We can check this by converting from binary
back into decimal:

100001102 = 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20

= 1 · 128 + 0 · 64 + 0 · 32 + 0 · 16 + 0 · 8 + 1 · 4 + 1 · 2 + 0

= 128 + 4 + 2

= 13410.

The above procedure does not readily admit to two’s complement rep-
resentations. To convert a negative decimal number into its binary two’s
complement equivalent, first convert the decimal magnitude into unsigned bi-
nary, extend with 0s to the left so that the correct number of digits (bits) are
included, and then negate the result.

185

Bibliography

[1] George Boole. An Investigation of the Laws of Thought on Which are
Founded the Mathematical Theories of Logic and Probabilities. Macmillan,
Ltd., Cambridge, UK, 1854.

[2] Brahmagupta. Algebra, with Arithmetic and Mensuration. John Murray
Press, London, UK, 1817. Translated from Brāhmasphut.asidhānta (c. 628)
by Henry Thomas Colebrooke.

[3] Roger D. Chamberlain, Ron K. Cytron, Doug Shook, and Bill Siever.
Computers interacting with the physical world: A first-year course. In
Proc. of Workshop on Embedded and Cyber-Physical Systems Education,
October 2018. DOI: 10.1007/978-3-030-23703-5 11.

[4] Leonhard Euler. Recherches sur les racines imaginaires des équations.
Histoire de l’Académie Royale des Sciences et des Belles-Letters de Berlin,
5:222–288, 1751.

[5] IEEE. Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Stan-
dard No. 754-1985, Institute of Electrical and Electronics Engineers, Inc.,
New York, NY, USA, 1985.

[6] Microchip Technology, Inc. AVR® Instruction Set Manual,
2021. http://ww1.microchip.com/downloads/en/DeviceDoc/

AVR-InstructionSet-Manual-DS40002198.pdf.

[7] Mary C. Potter, Brad Wyble, Carl Erick Hagmann, and Emily S. McCourt.
Detecting meaning in RSVP at 13 ms per picture. Attention, Perception,
& Psychophysics, 76(2):270–279, 2014.

[8] Denise Schmandt-Besserat. Before Writing, Vol. I: From Counting to
Cuneiform. University of Texas Press, Austin, TX, USA, 1992.

187

http://ww1.microchip.com/downloads/en/DeviceDoc/AVR-InstructionSet-Manual-DS40002198.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/AVR-InstructionSet-Manual-DS40002198.pdf

Bibliography

[9] Gregory K. Wallace. The JPEG still picture compression standard. Com-
munications of the ACM, 34(4):30–44, April 1991.

188

Index

7-segment display, 108

A/D converter, 39
A/D counts, 39
active high, 14, 22
active low, 14, 22, 23
addressing modes, 131
analog-to-digital converter, 39
analogReference(), 42–44
analogWrite(), 35, 117
assembler, 7, 135
assembly language, 7, 119, 135
attachInterrupt(), 72
attachInterrupts(), 73
attribute-value pair, 164

Boolean, 3
Boolean algebra, 4
bubble diagram, 59

callee-save registers, 153
caller-save registers, 152
compiler, 8
complex numbers, 85
concurrency, 157
counting numbers, 81
critical section, 73

data section, 138
delay(), 51–53, 67, 73, 76, 78
delta time, 53

denormalized, 99

digitalOut(), 110

digitalPinToInterrupt(), 72

digitalRead(), 23, 125, 154

digitalWrite(), 12, 51, 125, 154

direct addressing, 132

directives, 138

double precision, 98

duty cycle, 32

event handler, 75

event-driven programming, 75

events, 75

excess notation, 92

exponent, 98

fetch-decode-execute cycle, 121

finite-state automaton, 59

finite-state machine, 59, 166

fixed point numbers, 96

fixed registers, 152

floating point numbers, 97

fprintf(), 178

hard real-time, 49

Harvard architecture, 119, 123

header, 163

hex, 89

hexadecimal, 89

high-level language, 7

189

Index

I/O bus, 124
I/O port, 125
I/O registers, 124, 131
IDE, 2, 8
imaginary numbers, 85
immediate addressing, 132
index registers, 133
indirect addressing, 133
integers, 83
integrated development environment,

2, 8
interrupt, 72
interrupt service routine, 72
interrupts(), 73
irrational numbers, 85
isDigit(), 67

key-value pair, 164

little-endian, 142
loop(), 2, 42

machine instructions, 119
machine language, 7, 119, 135
magic number, 163
mantissa, 98
matrix display, 113
memory map, 127
message, 162, 163
microcontroller, 2, 119
microprocessor, 119
micros(), 51
millis(), 51, 54, 73, 165

name-value pair, 164
NaN, 99
natural numbers, 82
noInterrupts(), 73
normalized, 98

object code, 135

offset notation, 92
opcode, 121, 137
operands, 121, 137
operating modes, 134

payload, 163, 164
peripheral, 124
pinMode(), 12, 23, 35, 125
pixel, 104
pixels, 113
polling, 67
positional numbers, 81, 87
post-increment, 133
pre-decrement, 133
printf(), 178
protocol, 160
pseudo-operations, 138
pulse-width modulation, 32
PWM, 32

Q notation, 96

radix, 88
radix complement, 93
radix point, 88
rational numbers, 83
real numbers, 85
real-time, 49
register addressing, 132

Serial, 158, 164, 178
Serial.available(), 167
Serial.print(), 158, 178
Serial.println(), 158
Serial.read(), 167
Serial.write(), 164
setup(), 2
sign bit, 94
sign-magnitude, 92
single precision, 98
sketch, 2

190

Index

soft real-time, 49
sprintf(), 178
stream, 158
String, 178
String length(), 174
String, 103, 174, 175
struct, 175
structure, 175

tag-value pair, 164
text section, 138
truth table, 4
two’s complement, 93

watchdog timer, 125, 131
whole numbers, 82

191

	Preface
	Acknowledgements
	Introduction
	Beginnings
	Why?
	The Arduino Platform

	Digital Systems
	Authoring Programs
	Integrated Development Environments
	Interacting with the Physical World
	The Role of Design

	Digital Output
	Why Digital Outputs?
	Software
	Example Digital Output Use Cases
	LED Indicator
	Buzzer
	Relay

	Digital Input
	Why Digital Inputs?
	Hardware
	Software
	Example Digital Input Use Cases
	Switch
	Proximity Detector
	Beam Sensor

	Debouncing Mechanical Contacts
	Hardware vs. Software

	Analog Output
	Why Analog Outputs?
	Relating Analog Output Values to Physical Reality
	Software
	Example Analog Output Use Cases
	Variable Speed Motor
	Loudness

	Analog Input
	Why Analog Inputs?
	Counts to Engineering Units
	Input Range and Linear Transformation

	Software
	Example Analog Input Use Cases
	Temperature
	Level
	Acceleration

	Timing
	Execution Time
	Controlling Time
	Delta Time
	Multiple Time Periods

	Design Patterns
	Finite-State Machines
	Polling and Interrupts
	Polling
	Interrupts
	Discussion

	Event-driven Programming
	Benefits of Event-driven Programming
	Challenges with Event-driven Programming

	Information Representation
	Numbers
	Brief History of Number Systems
	Positional Number Systems
	Supporting Negative Numbers
	Integer Data Types in Programming Languages
	Fractional Numbers
	Real Numbers

	Text: Characters and Strings
	ASCII
	Unicode
	String Representations

	Images
	Monochrome Images
	Color Images

	User Interaction
	Visual Display
	Display Technologies
	7-segment Displays
	Pixel-oriented Displays

	Hearing and Other Senses
	Sound
	Other Senses

	User Input
	User Interface Design

	Computer Architecture
	Basic Computer Architecture
	Architecture Components
	Fetch-Decode-Execute Cycle

	Instruction Set Architecture (ISA)
	Register File
	Memory Model
	Instruction Set
	Operating Modes

	Assembly Language
	Machine Instructions
	Assembly Language Instructions
	Labels and Symbols, Constants and Numbers
	Assembly Language Pseudo-operations
	Sections
	Data Section Pseudo-ops
	Text Section Pseudo-ops
	Macros

	Authoring in Assembly Language
	Accessing Data
	Control Flow Templates

	Interfacing with C
	Calling Conventions
	Calling C Routines from Assembly Language
	Calling Assembly Language Routines from C

	Computer to Computer Communications
	Stream Concepts
	Delivery of Streams
	Internet
	Serial Ports
	Other Streams

	Protocols
	Byte Delivery
	Delivering Larger Data Items
	Messages

	Sending Messages: Composition
	Receiving Messages: Parsing

	Conclusions
	Languages
	Java vs. C
	Basic Syntax
	Primitive Data Types
	Strings
	Arrays
	Heterogeneous Data Structures and Objects
	Memory Management
	Other Minutiae

	C vs. Arduino C
	Primitive Data Types
	Objects
	Printing

	Simple Introduction to Electricity
	Base Conversions
	Convert Base A to Base B using Base B Math
	Convert Base A to Base B using Base A Math

	Bibliography
	Index

